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ABSTRACT

An analysis considering nonuniform radiosity and assuming diffusely emitting and re-
flecting surfaces is presented. The shields are planar and circular, while the sources
may be surfaces of revolution. The effects of source geometry, number of shields,
spacing, and surface properties are discussed. Shield conductivity and selective coatings
are investigated. Specularly and diffusely reflecting surfaces are discussed under the
simplifying assumption of uniform radiosity. Also, the effects of thermal radiation on
the temperatures of a conducting structural member are analyzed. Results are presented
showing the effects of significant parameters on the temperature profiles and heat-
transfer rates. The computer program for the shield analysis is listed.
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THERMAL ANALYSIS OF SHADOW SHIELDS AND STRUCTURAL
MEMBERS IN A VACUUM
by Robert J. Boyle and Richard H. Knoll

Lewis Research Center
Cleveland, Ohio

SUMMARY

An analysis is presented which predicts heat-transfer rates as a function of the num-
ber of shadow shields used. The system analyzed consists of two sources and the shields.
One of the sources may be solar radiation. It is shown that shields form an effective
means of reducing radiant heat transfer. A possible application of these shields is the
reduction in the heat transfer to a cryogenic propellant.

The shields are flat disks while the sources may be surfaces of revolution. The
sources and shields have a common axis of revolution. The prime analysis used is for
diffusely emitting, diffusely reflecting surfaces assuming nonuniform radiosity. The anal-
ysis considers thermal radiation and radial shield conduction. The effects of the simpli-
fying assumption of uniform radiosity are considered. It is concluded that for many cases
it may be necessary to use the more complicated assumption of nonuniform radiosity in
order to have accurate heat-transfer predictions. Specularly reflecting surfaces are ex-
amined under the simplifying assumption of uniform radiosity. As the spacing between
surfaces increases, the heat transfer for specular surfaces may significantly exceed that
for diffusely reflecting surfaces.

In addition to the analysis for the shadow shields, an analysis is presented to predict
the temperature distribution along a cylindrical conducting strut. This analysis for the
strut considers both internal and external radiation. The struts are needed in order to
attach the shields to the rest of the vehicle. The thermal analysis for the strut concludes
that increasing the external emissitivity is effective in lowering the conducted heat trans-
fer out of the strut. The interaction of the struts and shields was not considered in the
analyses.

For both the shield and strut analyses, predicted temperatures are compared with
experimental data. Heat-transfer rates for the shields are also compared with experi-
mental data.



INTRODUCTION

The design of space vehicles for long-term missions often requires thermal protec-
tion systems. This is especially true when cryogenic propellants are involved. Shadow
shields are a means of reducing the radiant energy absorbed by a propellant tank, This
results in reduced boiloff. Shadow shields can also be useful in protecting a relatively
warm body, such as a payload, from receiving excessive amounts of solar energy. The
primary area of application for shadow shields is in a vacuum. Otherwise, convection
may be the dominant mode of heat transfer. The basic purpose of this report is to present
an analysis for multishield configurations in a space environment.

Previous studies considered shadow shields for thermal protection of cryogenic pro-
pellants on long-term missions, and the protection of payloads passing close to the sun.
These studies considered flat disk, spherical, and conical shields (refs. 1 to 5). The
analyses in these referénces were generally for shadow shields of uniform temperature.
Reference 3 analyzed flat disks exposed to solar radiation for both zero and infinite radial
conductance. Reference 6 determined the local and overall heat-transfer rates for two
flat circular sources. In references 3 and 6, the surfaces were treated as having nonuni-
form radiosity.

In this report, the effects of finite shield conductance and variable surface properties
are considered. The analysis presented is applicable for any number of shields, and data
are given for up to three shields. Assumptions made concerning the radiosity and reflec-
tivity of the surfaces can affect the predicted heat-transfer rates. The prime analysis
assumes diffusely emitting and diffusely reflecting surfaces of nonuniform radiosity. The
consequences of making the simplifying assumption of uniform radiosity are examined.
Specularly reflecting surfaces are also analyzed under this simplifying assumption.

The shields stand off from the surface which is being protected. It is necessary to
support the shields, and an analysis for the appropriate structural members is also pre-
sented. However, the interaction between the shields and supports is not analyzed.
Therefore, the thermal analysis for the shield support is applicable to cylindrical mem-
bers in space. The analysis for the support gives the axial temperature distribution along
a tube or rod. This analysis considers both conductive and radiant heat transfer.

Comparisons for both the shield and strut analyses are made with experimental data
reported in reference 7. A computer code for the shield analysis is listed and discussed.
The code is for diffusely emitting and reflecting surfaces of nonuniform radiosity.




METHOD OF ANALYSIS

Shield System

The steady-state temperature distributions in a shield system and consequently the
heat-transfer rates are determined by taking heat balances on elemental areas of each
shield. These heat balances account for the energy emitted, absorbed and reflected as
well as conducted to or from the element under consideration. All of the elements on the
shield as well as the surroundings and the elements of the adjacent surfaces enter into the
radiant heat terms. Adjacent elements of the same shield also enter the conduction terms
of the balance. Appendix A gives the symbol list used in the analyses. Appendix B pre-
sents the equations for a system consisting of shields and two sources. One of the
sources may be solar radiation. Figure 1 gives a schematic of two possible shadow-
shield configurations. From an analytic standpoint, sources are similar to shields ex-
cept that they have temperature distributions which are known a priori. The sources can
be at any temperature; therefore, they may act as sinks.

In order for the analysis to be applicable to a system of shadow shields, the system
must satisfy certain requirements. These conditions are:

(1) There can be no more than two sources and these may be surfaces of revolution
but they cannot see themselves.

(2) The shields have to be circular and planar.

(3) The shields and the sources have a common axis of revolution.

(4) The size of the shields and sources are such that a surface of either a source or
shield sees only one surface. When one of the two sources is solar radiation, the outer-
most surface, and only this surface, has solar radiation incident upon it.

The derivations of the governing equations in appendix B are made under the follow-
ing assumptions:

(1) The environment between each pair of surfaces has a single temperature and con-
stant reflectivity. The environment is that space which completes the enclosure between
two surfaces.

(2) There is no thermal gradient in a shield in either the circumferential or axial
directions.

(3) Heat is transmitted to or from a shield only by radiation. Under this assumption,
each shield is isolated from its support structure.

(4) While each shield has a finite thickness, it is assumed that there is no radiation to
or from the edge of the shield.

(5) The equations are derived for steady-state conditions.

(6) All surfaces are opaque so that « + p =1 at every point on the surfaces.



(7) Emissivity and absorptivity can each be separate functions of radial position and
temperature, but are constant in the circumferential direction. These properties are
taken to be only a function of the temperature of their surface. Emissivity and absorp-
tivity may be functions of wavelength, but this is not accounted for in the analysis.

(8) Each shield is homogeneous so that the thermal conductivity of the shield is a
function only of temperature.

(9) Each of the surfaces is diffusely emitting and diffusely reflecting.

A comparison is made in a later section of the report between the heat-transfer rates
for specularly reflecting surfaces and diffusely reflecting surfaces. The equations used
for determining the heat-transfer rate between specularly reflecting surfaces of uniform
radiosity are presented in appendix C. In the analysis for specular surfaces, it is as-
sumed that the reflectivity is independent of the angle of incidence. Also, polarization
effects were neglected.

The equations presented in appendix B for predicting the performance of a shadow-
shield system result from each of the surfaces being divided into a series of concentric
annuli and heat balances being made on each annulus. Heat enters an element due to solar
radiation absorbed on the surface or from thermal energy radiated from an adjacent sur-
face. Energy leaves the annulus due to the emissive power of the element. Additional
heat enters or leaves the element due to conduction from the two adjacent elements on the
same shield. As the number of annuli increases, each of the annuli approach a differen-
tial area in size. When the annuli represent differential areas, the results obtained are
for surfaces of nonuniform radiosity. When only a single annulus is used for each sur-
face, the results obtained are those for uniform radiosity surfaces. Unless otherwise
noted, the results in this report are for diffusely reflecting surfaces of nonuniform radi-
osity. In connection with the discussion on specularly reflecting surfaces, a discussion
is included on the errors which result from assuming surfaces to have uniform radiosity.

Thermal Distribution Along Structural Member

The analysis in appendix D yields the steady-state, one-dimensional temperature
distribution in the axial direction along a structural member which may be either a rod or
a tube. Figure 2 gives a representation of a strut. In order for the analysis to predict
the temperature distribution for a rod accurately, there should be low thermal resistance
in the radial and circumferential directions. The environment is taken to have a uniform
temperature and reflective properties. As in the derivation of shadow-shield equations,
it is assumed that the surfaces are diffusely emitting and diffusely reflecting. It is nec-
essary to divide the strut into several segments due to the axial temperature variation;
and, therefore, the results obtained for the internal radiant heat transfer approach the
case of nonuniform radiosity.
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The governing equations are determined by taking a heat balance on the elements of
the strut. Heat enters an element of the strut by conduction from an adjacent warmer
element and may be conducted away to an adjacent colder element. Additional heat enters
or leaves the element by thermal radiation from the inside surface of the tube. I the
ends of the tube are closed, the end surfaces are taken to be at the same temperature as
the ends of the tube. These two end temperatures are the known boundary temperatures.
If the ends of the tube are open, the end disks have the properties of the surroundings,
which are assumed black, but not necessarily at zero temperature.

The equations presented in appendix B for the shadow shields, and in appendix D for
the strut are relatively complex. The solution of these equations is discussed in appen-
dix E, and appendix F presents a computer code for solving the shadow -shield equations
of appendix B.

COMPARISON OF RESULTS

This section of the report discusses the comparison of experimental and analytic re-
sults. In addition, mention is made of previous analyses with which the work presented
herein was compared.

Shadow Shields

The analysis presented in appendix B yields results consistent with the assumptions
of uniform radiosity surfaces when each surface is taken to have a single annulus. Under
this condition, the results are comparable with those presented in reference 1.

When the analysis is performed using a large number of annuli for each surface, the
results obtained approach those for nonuniform radiosity surfaces. In reference 6, ana-
lytic results are presented for the heat-transfer rates between two surfaces wherein it is
assumed that the surfaces have nonuniform radiosity. Solving the equations of appen-
dix B for the case of nonuniform radiosity gives results which agree with those of refer-
ence 6.

Experimental data for shadow-shield systems are given in reference 7 and some of
these data are reproduced in the following figures. Figure 3 gives a comparison of ana-
lytic and experimental heat-transfer rates as a function of spacing for a one- and three-
shield system. The shields were made of copper so that their radial temperature distri-
bution was nearly uniform. The shields were evenly spaced between two plane sources
with the warmer source being maintained at 444 K (800° R) and the colder one at 77.8 K
(14(00 R). This figure contains data for both a one- and three-shield system at two dif-
ferent shield emissivities. In one case, the shields were painted to give a nominal



emissivity of 0.94, the same as the sources. While in the other case, the shields were
glass blasted to give a nominal emissivity of 0.27. (The surface properties of both the

painted surfaces and glass-blasted shields were determined to be a function of tempera-
ture so that there was a variation in emissivity from one surface to the next.) As is ex-
pected, the heat transfer decreases with the addition of more shields and increases with
increasing emissivity.

As the emissivity approaches unity, the difference in the heat-transfer rates between
assuming uniform and nonuniform radiosity goes to zero. Therefore, the analytic predic-
tions for the high-emissivity cases are nearly the same using either assumption. Only a
single curve is shown for each of these cases. The single glass-blasted shield (¢ = 0.27)
was located between two high-emissivity sources. For this case also, both heat-transfer
rates are nearly the same. Therefore, only one heat-transfer rate curve is given.

There is a significant difference between the two heat-transfer rates for the three
glass-blasted shields (¢ = 0.27). As can be seen, the assumption of nonuniform radiosity
gives better agreement with the experimental data.

In figure 4, the experimental and analytic temperatures are plotted as a function of
radial position for a three-shield configuration. The shields were made of Mylar which
is a very low conducting material; and, consequently, a large radial temperature gradient
is present in each of the shields. AIll of the surfaces were painted with a high-emissivity
coating (¢ ~ 0.94) in order to give a high heat-transfer rate to the colder source. A high
heat-transfer rate was desirable in order to improve the accuracy of its measurement.
The analytic radial temperature distribution closely follows the experimental one for each
of the shields, even to the extent of predicting the temperatures at the outer edge of each
of the shields.

In figure 5, the radial temperature distribution is plotted for a two-shield configura-
tion. In the experiment, all surfaces except one were coated with a high-emissivity paint
(e # 0.94). The side of the warmer shield facing the colder shield was left unpainted ex-
cept for a rim which covered 0. 16 of the radial distance. The purpose of this test was to
see if the calculations would accurately predict the behavior of a shadow-shield system
when the emissivity of a surface was not constant. The shield with a targeted rim was
made of Mylar with a thin layer of aluminum laminated to the Mylar on each side. This
resulted in an emissivity of about 0.03 for the unpainted center portion. The colder of
the two shields was a plain Mylar shield painted on both sides with a high-emissivity
paint. Even though the aluminum increased the conductivity of the warmer shield, the
thickness of the aluminum was so small that the overall conductivity was still low. If the
rim of the shield were not coated, one would expect a temperature distribution similar to
that presented in the previous figure. However, coating the outside surface of the shield
causes much more energy to be emitted from the surface. This energy causes a local in-
crease in the temperature of the adjacent colder shield. This effect is illustrated in this



figure. The analytic radial temperature distribution closely follows the experimental dis-
tribution for both the warmer and colder shields.

Structural Member

In reference 8, analytic data were presented for the temperature distribution and
heat-transfer rates for a pipe penetration with an adiabatic external surface. Setting the
external emissivity equal to zero simulated this condition when using the analysis pre-
sented herein. For similar cases, results calculated using the equations presented in
appendix D, agreed to within the accuracy of the plot reported in reference 8.

In reference 7, experimental temperature distributions were reported for tubes de-
signed as scaled-down representations of support members. Figure 6 gives two of these
temperature distributions and an analytic comparison for each distribution. One of the
struts was left unpainted while the other was partially painted in the circumferential di-
rection to give an average emissivity of 0.6 in the axial direction. The manner in which
the second strut was painted is shown in figure 6. The measured emissivity of the bare
metal over the temperature range to which the struts were subjected is closer to 0.25
than the handbook value of 0.3 which was reported in reference 7. The analysis herein
uses an emissivity of 0.25 for the bare metal and accounts for internal emissivity. The
analytic curves in reference 7 were based on an emissivity of 0.3 and did not account for
the effects of internal emissivity. Both struts were made of stainless steel which has a
relatively low thermal conductivity. When considering only conduction with a constant
thermal conductivity, a straight line would connect the end points in figure 6. It can be
seen from this figure that at the higher emissivity the temperature distribution departs
more from the straight-line distribution.

One of the possible reasons for the discrepancy between the analytic and experimen-
tal results in figure 6 is that the analysis assumes the strut to be a cylinder while the ex-
perimental struts formed a cone at each end. Also, the calculations were carried out as-
suming that the bare metal inside surfaces of the tube were diffusely reflecting. In ref-
erence 9, the effects of having specular surfaces on the heat transfer through a noncon-
ducting tube are examined. In this reference, it is shown that for an Z/dL of 20 and an
internal emissivity of 0.25, which is representative of the struts reported in reference 7,
over four times as much energy can be transported through the tube when the surfaces
are specularly reflecting as opposed to when they are diffusely reflecting. Since much of
this energy would be reflected at the end of the tube, the temperature profile at the cold
end would be altered if the surfaces were specularly reflecting. If, in addition, the ener-
gy was polarized so that the component of reflectivity was large in the direction parallel
to the axis of the tube, larger heat-transfer rates would result.



Consequences of Assuming Specularly Reflecting Surfaces

and Uniform Radiosity

The primary analysis used in this report (appendix B) assumes that all surfaces are
diffusely emitting and reflecting and have nonuniform radiosity. In this section of the re-
port, the change in the heat-transfer rate which results from surfaces being diffusely
emitting but specularly reflecting is examined. Also, the effects on the heat-transfer
rate due to the simplifying assumption that the surfaces have uniform radiosity are dis-
cussed. It is simpler to calculate heat-transfer rates assuming surfaces of uniform radi-
osity. However, this assumption does not yield temperature profiles for each shield and
may significantly underestimate the real heat-transfer rates.

Specular surfaces. - In appendix C, the method used to calculate the heat-transfer
rates and temperature of each shield for specularly reflecting surfaces is presented.
This method is for diffusely emitting surfaces under the assumption of uniform radiosity.

An indication of the effects of assuming specular rather than diffuse reflections is
given in figure 7 for various surface emissivities and spacing ratios. The ordinate gives
the ratio of the heat-transfer rate to a source at zero temperature for specular surfaces
of uniform radiosity to the heat-transfer rate for diffusely reflecting surfaces of uniform
radiosity. Both surfaces have the same emissivity and curves of constant emissivity are
plotted. It can be seen that as the spacing ratio increases at constant emissivity, the
ratio of the heat-transfer rates also increases. In addition, as the emissivity decreases

the ratio also increases.

In figure 8, the same parameters as in figure 7 have been plotted except that a shield
has been placed midway between the two sources. The surfaces of the shield are specu-
larly reflecting like the sources and have the same emissivity as the sources. The re-
sults of placing the shield between the sources is to magnify the ratio of the heat-transfer
rates. In figure 8, the shield temperature is uniform due to assuming uniform radiosity
and emittance. Because of the assumption of uniform radiosity, these two figures only
give an indication of the effects of specular reflectivity. It would be more accurate to
consider the effect of nonuniform radiosity on the heat-transfer rates. However, this
was beyond the scope of this report.

Comparison of uniform and nonuniform radiosity assumptions. - The two previous
figures presented a comparison of the heat-transfer rates for specularly reflecting with
diffusely reflecting surfaces under the assumption of uniform radiosity. In figures 9
and 10, comparisons are made in the heat-transfer rates between uniform radiosity and
nonuniform radiosity under the assumption of diffusely reflecting surfaces. In figure 9,
the ratio of the heat-transfer rates of nonuniform to uniform radiosity is given as a func-
tion of spacing ratio for constant emissivity. Both surfaces have the same area; and,
again, the ratio is for a cold-source temperature of zero. It can be seen from figure 9




that as the spacing increases, the ratio of the heat-transfer rates reaches a maximum and
then decreases. However, the ratio of the heat-transfer rates at any spacing decreases
with increasing emissivity.

In figures 10(a) and (b), the same parameters as in figure 9 are plotted except that a
shield has been placed midway between the two sources. Figure 10(a) is for a noncon-
ducting shield while figure 10(b) is for a uniform temperature shield. A comparison of
these two figures shows that the effects of the shield conductivity assumptions on the heat-
transfer ratio are small in relation to the effects of the radiosity assumptions. In each of
these figures, the effect of placing a shield between the source is to magnify the ratio of
the heat-transfer rates.

In the previous four figures, the heat-transfer ratio was given as the dependent varia-
ble. In the next two figures, the actual heat-transfer rate is given as a function of emis-
sivity. In figure 11, the nondimensional heat-transfer rate is plotted as a function of
emissivity for two different spacing ratios and the various types of surfaces which have
been discussed. In figure 12, the same parameters have been plotted with the addition of
a single shield midway between the two sources.

At an LT/R of 0.1 in either figure 11 or 12, the difference between the heat-transfer
rates for diffuse surfaces of uniform radiosity and specular surfaces of uniform radiosity
is small. The difference between diffuse surfaces of uniform radiosity and those of non-
uniform radiosity is larger. At an LT/R of 1.0, there is a significant difference in the
heat-transfer rates between specular and diffuse surfaces of uniform radiosity. How-
ever, an LT/R of 1.0 represents a relatively large spacing for shadow-shield applica-
tions. 3

By comparing figures 11 and 12, it can be seen that as the number of surfaces in-
volved increases, the differences in the heat-transfer rates caused by the various as-
sumptions generally increase. The curves presented in this report for diffusely reflect-
ing surfaces of nonuniform radiosity might be significantly different from the results ob-
tained for specularly reflecting surfaces of nonuniform radiosity if the number of shields
were large and the emissivity low with a large spacing ratio.

In the previous six figures, the cold-source temperature was taken to be zero. When
the temperature of the colder source is increased, the change in the heat-transfer rate
caused by the different analyses becomes greater. This is illustrated in figure 13 where
the increase in the heat-transfer rate is given for various source temperature ratios.

The increase in the heat-transfer rate is due to assuming specularly reflecting surfaces
over diffusely reflecting surfaces. The increase in the nondimensional heat transfer to
the colder source in terms of the warm-source temperature (AQI /oAng) is plotted as
a function of spacing ratio for constant source temperature ratios and a system consisting
of two plane sources with no shields. It is necessary to plot the increase in the heat-
transfer rate rather than the ratio of the heat-transfer rates because for some cold-
source temperature ratios, the heat-transfer rate for diffusely reflecting surfaces goes



to zero. It can be seen from figure 13 that the cold-source temperature has to become a
fairly large fraction of the warm-source temperature before the increased heat transfer
due to specular reflectivity becomes much greater than the increased value for a cold-
source temperature of zero.

It is simpler to calculate heat-transfer relations assuming uniform radiosity sur-
faces. If one does not require the temperature profile across the shield and the emissiv-
ities of the surfaces involved are not too small, the heat-transfer relations presented in
reference 1 for diffusely reflecting surfaces of uniform radiosity may suffice. The infor-
mation presented in the previous figures should aid one in judging whether the assumption
of uniform radiosity is satisfactory.

PARAMETRIC DATA

Shadow Shields

The equations used to determine the heat-transfer rates are linear in T4 when there
is no conduction or when the shields have uniform temperatures. An additional require-
ment for linearity is that surface properties be independent of temperature. In appen-
dix B, it is shown that when the equations are linear, the heat-transfer rate for any pair
of source temperatures can be found using only a pair of nondimensional heat-transfer
rates. Each of these rates gives the contribution of one of the sources. The equation for
the addition of the heat-transfer rates is:

. . % -t
Q Q Q
dos 1 g2, (Tt \pd (1)
Aq ard) 2 \oart) !

0A 142 i Bl |

Ql/Al is the net heat-transfer rate per unit area to source 1. Q’; cAng is the

nondimensional heat-transfer rate to source 1 due solely to a temperature on source 2.
(.iz'l/crAlTll1 is the nondimensional heat-transfer rate to 1 resulting from the temperature
of source 1. T1 and T2 are the source temperatures. The application of this equation
is illustrated in a subsequent portion of the report.

One of the applications of shadow shields would be the reduction of the heat transfer
to a liquid hydrogen tank. The emissive power of a source at liquid hydrogen tempera-
ture is low. Therefore, much of the data in this report is for the heat-transfer rate to a
source at 0°. This is done to avoid the necessity of giving two heat-transfer rates for
each case. Nonconducting shields yield higher heat-transfer rates than conducting
shields. For conservative results, heat-transfer rates are for nonconducting shields un-
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less otherwise stated. For simplicity, the data given in this report are for shields of the
same size. Planar sources have the same surface area as each side of the shields, and
nonplanar sources have the same lateral radius as the shields. Also, for convenience,
data are given for black surroundings at zero temperature.

Source geometry. - The heat-transfer rate for two plane sources with and without a
single shield placed between them has been given in figures 11 and 12. In figure 14, the
heat-transfer rate to a source at zero temperature is given as a function of emissivity for
two nonplanar sources and various spacings. Each source is an oblate spheroid whose
major radius is ‘/é— times the minor radius. It can be seen from this figure that the
heat-transfer rate is a strong function of emissivity. As the emissivity decreases, the
effects of the spacing ratio become somewhat more pronounced.

In figure 15, the parameters given in figure 14 are plotted for a single planar shield
placed midway between the two nonplanar surfaces. With the addition of a single shield,
the effects on the heat-transfer rate due to the overall spacing become more pronounced
especially at lower emissivities.

Number of shields. - The next two sets of figures are used to determine the net heat-
transfer rate to a plane source when both sources have nonzero temperatures. Figures
16(a) to (d) give the heat-transfer rate to a source of zero temperature, and figures
17(a) to (d) give the heat-transfer rate when the other source has a zero temperature.

In figures 16(a) to (d), the heat-transfer rate to source 1 is given as a function of the
number of shields placed between the two sources. For each of the figures, the overall
spacing ratio (LT/R) is held constant and curves are given in which all of the surfaces
have the same emissivity. It should be noted that figures 16(a) and (b) have one ordinate
scale while figures 16(c) and (d) have another scale. Since a fractional number of shields
has no physical significance, only integer values of the abscissa have meaning. By com-
paring particular points on each of these figures, it can be seen that increasing the spac-
ing ratio increases the efficiency of shadow shields.

Figures 17(a) to (d) are the complement of figures 16(a) to (d) in that the heat-
transfer rate to source 1 due to the presence of a temperature on source 1 is given.
Again, note that there is a scale change in the ordinate of these figures. Figures 17(a)
and (b) have one scale while figures 17(c) and (d) have another scale. There is a net heat
transfer out of the source for all cases; therefore, the ordinate of figures 17(a) to (d) is
negative. It can be seen from these figures that as the spacing between the source and
nearest surface becomes large, the heat-transfer rate out of the source approaches the
limiting value of Q'1 /oAlTil = €. This quantity is the amount of heat which would leave
the source if the nearest surface was at an infinite distance from the source.

In order to show how the data in figures 16 and 17 may be used to determine the net
heat transfer to a source, an illustrative example is given. The example is for two plane
sources with two equally spaced shields. A spacing ratio (LT/R) of 0.3 is chosen and the
emissivity of each surface is 0.1. The warmer source has a temperature of 300 K
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(540° R). The colder source has a temperature of 100K (180°R). .
The first nondimensional heat-transfer rate in equation (1) (Ql /oA 1T‘f> is found from

figure 16(c). The second nondimensional heat-transfer rate (Q‘l / cAlTlll> is found from
figure 17(c). Substituting the appropriate values in equation (1) gives the following result:

Q
“1_5.67x1078 [(2. 1x1073(300)% + (-0.065)1004]
A

1

Q
®1_ 4 595 W _0.189 Biu

Ay m?  (hr)(it?)

Figure 18 illustrates the effects of varying the temperature of the colder source on the
heat-transfer rate. In this figure, the nondimensional heat-transfer rate in terms of the
temperature of the warmer source is plotted as a function of emissivity for various tem-
perature ratios. It can be seen from this figure that the colder temperature has to be a
fairly large fraction of the warmer temperature before the heat-transfer rate changes a
great deal with respect to temperature. It can also be seen from this figure that for some
temperature ratios the minimum heat-transfer rate has a negative value. This means
that the absolute minimum heat-transfer rate may occur at an emissivity other than zero.
When all surfaces have the same emissivity, the minimum heat-transfer rate is not a
strong function of emissivity. If the emissivity were allowed to vary from one surface to
another, the minimum could be lower. This can be seen from the dashed curve in fig-
ure 18. For this curve, the colder source has an emissivity of 0.9 while all other sur-
faces have the emissivity given by the abscissa of figure 18. The temperature ratio
(TI/TZ) is 0.75.

Up to this point, only heat-transfer rates have been discussed. Shield temperatures
are also of interest since the temperature gradients in the shields may affect the design
of the shield system. The following figures give temperature profiles for some represen-
tative nonconducting shields. Figures 19(a) to (c) present the shield temperature against
radial position for a one-, two-, and three-shield case. For each of the three figures,
the overall spacing between the sources is held constant. It can be seen that the shield
temperatures drop off sharply toward the outer edge of each of the shields. The temper-
ature difference across the shield become slightly greater as the temperature of the
shield increases. The short horizontal line crossing each of the curves indicates the
temperature of an infinitely conducting shield under the same conditions,

Targeting. - When the emissivity of the surfaces of a shadow-shield system are uni-
form in the radial direction, reducing the emissivity generally reduces the heat-transfer
rate to the colder source. It is sometimes possible to gain a further reduction in the
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heat-transfer rate for low-emissivity surfaces by using a high-emissivity coating on the
outer edges. Shields for which this is done take on the appearance of targets due to cir-
cumferential symmetry. It is generally necessary that there be more than one shield in
the system for targeting to produce a reduction in the heat-transfer rate.

Figures 20(a) and (b) illustrate the effects of targeting for uniform temperature
shields and nonconducting shields for a system consisting of two plane sources separated
by two shields. In order to obtain a decreased heat-transfer rate, it is necessary to far-
get the surface of the warmer shield facing the colder shield. The percentage change in
the heat-transfer rate due to targeting is plotted as a function of the percentage area of
the shield which is targeted. The results for two overall spacing ratios are shown. From
figures 20(a) and (b), it can be seen that for this case there is some decrease in the heat-
transfer rate due to targeting uniform temperature shields, but no improvement is notice-
able for nonconducting shields. The targeted areas of the uniform temperature shields
act like fins in that they are able to take energy from the shield and dissipate it to space.
The nonconducting shields are less efficient at doing this. The changing of the shield
temperatures due to targeting is illustrated in figures 21(a) to (c) for nonconducting
shields. In these figures, the temperature profiles are plotted as a function of radial po~
sition for an untargeted system and two combinations of targeted shields. The upper
curve gives the temperature of the warmer shield in each figure. In each case, the non-
dimensional heat-transfer rate is also given. Even if targeting does not provide an im-
provement in the heat transfer for nonconducting shields, targeting can drastically alter
the temperature profile of the shield.

The heat-transfer rate varies little while the temperatures vary substantially in each
of the three cases presented. In figure 21(b), the temperature of the outer edge is
greatly lowered. This could prove useful in attaching shields to their support members.
Shields could be thermally bonded to the support structure. If the rim temperature was
lower than that of the adjacent structure, the shields could act as fins to dissipate heat
from the strut. In this way, the local temperature of the strut would be lowered and this,
in turn, might reduce the conducted heat out of the strut. The interaction of shields and
their support structure is not analyzed in this report. In figure 21(c), the radial temper-
ature difference has been lessened for each of the shields by means of targeting.

Shield conductivity. - Figure 22 illustrates the effect of shield conductivity on the
heat-transfer rate. As the conductivity of a shield increases, the temperature of the
shield becomes more uniform and the heat-transfer rate decreases. Shields which have
the same values of the scaling parameter (kt/o’I‘gR%, where T2 is a reference tempera-
ture) have the same radial temperature profiles and heat-transfer rates. In figure 22,
heat-transfer ratios for partially conducting shields are given as a function of this param-
eter. The ordinate of figure 22 is the ratio of the heat-transfer rate to the heat-transfer
rate for uniform temperature shields and data are given for one-, two-, and three-shield
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configurations. Only when the conductivity parameter has a value of zero or infinity are
the equations for the heat-transfer rates linear. It should be noted that at these two ex-
tremes the abscissa has been made discontinuous in order to show the effects of the two
assumptions which yield linear equations. From this figure, it can be seen that when
there are several shields involved, there can be a significant change in the heat-transfer
rate due to thermal conductivity. These curves are given for an emissivity of 0.1 and
although it is not shown on the figures, the ratio of the heat-transfer rates increases with
decreasing emissivity.

When the thermal conductivity has a finite value other than zero, it is necessary to
solve nonlinear equations in order to determine the temperature distributions. In appen-
dix B, a solution is given in which the conducted heat transfer is treated as a known quan-
tity during each iteration cycle. As the conductivity of the shields increases, it becomes
less desirable to do this. In appendix E, an alternate solution is given in which the ra-
diant heat transfer is treated as a known quantity during each iteration, and the tempera-
ture distributions are found by solving the conduction equations.

Shield position. - In the previous figures, the shields were placed so that there were
equal spacings between surfaces. Figures 23(a) to (e) illustrate the effects of varying the
spacings between surfaces for two emissivities. In each of the figures, the variable giv-
ing the relative spacing (L/LT) is measured from the warmer source.

The ordinate in each figure is the ratio of the heat-transfer rate to the heat-transfer
rate for the same number of evenly spaced shields. In figure 23(a), there is a single
shield present and in figures 23(b) and (c), there are two and three shields, respectively,
with the spacing between shields remaining constant. For these three cases, the spacing
for the minimum heat-transfer rate is halfway between the two sources for both emissivi-
ties. As the emissivity decreases, the heat-transfer rate is more sensitive to spacing.
The heat-transfer rate decreases with increasing number of shields, so that the ordinate
is different for each of these figures. The actual heat-transfer rate is lowest for three
shields.

Figures 23(d) and (e) are for configurations in which the shields have the same spac-
ing relative to the sources. In figure 23(d), both shields come closer to the center as the
abscissa is increased; and in figure 23(e), the center shield remains fixed while the two
outer shields approach it for increasing values of the abscissa. In both of these figures,
the spacing for minimum heat transfer is a function of emissivity.

Solar radiation. - When one of the sources is solar radiation, this radiation is inci-
dent only on the outermost surface. If the equations are linear, the net heat-transfer
rate to a source can be found by using two generalized heat-transfer rates. The heat-
transfer rate due to solar radiation is proportional to the solar flux (¢) times the solar
absorptivity (¢ ). The solar absorptivity is taken to be independent of the emissivity of
the surface. In this way, increasing the solar absorptivity is equivalent to increasing the
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solar flux. Therefore, these variables can be combined with others to form nondimen-
sional heat-transfer rates.

Figure 24 gives the nondimentional heat-transfer rate due to solar energy as a func-
tion of the spacing ratio for two nonconducting shields and a plane source. All surfaces
have the same emissivity, and lines of constant emissivity are plotted. It can be seen
that as the spacing ratio decreases, the heat—transfer rate increases with the greatest
change coming for low-emissivity surfaces. As the spacing ratio reaches a very small
value, the heat-transfer rates become less dependent on the emissivity of the surfaces.

In figure 25, the nondimensional heat-transfer rate is plotted as a function of spacing
ratio for surfaces of constant emissivity. In this figure, the solar flux is taken to be
zero. The inner shield is placed midway between the source and the outer shield. The
heat~transfer rate to the plane source is negative since there is no solar flux. From this
figure, it can be seen that as the emissivity decreases and spacing ratio increases, the
heat-transfer rate approaches the limiting value of Q1 /crAlTll1 =€.

The information presented in figures 24 and 25 can be utilized in order to determine
the net heat-transfer rate into a source when the system is exposed to solar radiation.
The solar flux varies with the square of the distance from the sun. At one AU, the solar
flux is about 1390 W/m2 (442 Btu/(hr) (ftz)). If it is desired to approach a one-tenth AU
distance from the sun, the solar flux would be 1.390x10° W/m? (4.42x10% Btu/(nhr) (it3)).
The sun is not really a point source so that a conical array of shields might be needed.
However, at this distance from the sun, the half angle of the cone is less than 39 and this
complication is neglected. In order to use figures 24 and 25, a system of two equally
spaced nonconducting shields is chosen. The overall spacing is taken to be 0.2 and the
source temperature is taken as 300 K (‘54:00 R). The emissivity of all of the surface is
assumed as 0.1 while the solar absorptivity is taken as 0.02. The net heat-transfer rate
to the source can be found from the equation:

. - Xk LI 4
Q Q, Q,
- = ngl(p +
A A.pwo

1 19% oA, T

oT‘11 @)
4
1

The first heat-transfer term is found from figure 24 and the second from figure 25. Sub-
stitution of values gives

= (0.0545)1. 390x10°(0. 02) + (-0.064)(5. 67x10~8)(300)*

Q
1 _q192.6 W o339 Bl

Ay m2 (hr) (it2)
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This value of 122.6 W/m2 is considerably less than the value of 2734 W/rn2 (867 Btu/
(hr) (ftz)) which would occur if no shields were present.

Structural Member

The structural member which is thermally analyzed in this report could be a support
member of a system for shadow shields. It could also be any of several other structural
members in an upper stage. The thermal analysis of this member can involve many in-
dependent variables. This is especially true when the internal emissivity is not zero.
The following figures present datafor a few cases representative of structural members
in a space vehicle. In figures 26(a) to (c), the nondimensional total heat-transfer rate is
given ag a function of emissivity. The solid lines are for closed ends while the dashed
line in each figure is for opened ends and an external emissivity of zero. When the ends
are closed, the total heat-transfer rate is the conducted heat-transfer rate at the colder
end plus the radiant energy absorbed by the end disk. When the ends are open, the total
heat-transfer rate is the conducted heat-transfer rate. When the internal emissivity is
zero, the internal radiant heat-transfer rate is also zero. For each of these figures, a
different 7/ dL is given and since the diameter of the tube is held constant, the radiation
to conduction parameter UTSZ 2/ kt increases with increasing Z/dL. It should be noted
that figure 26(c) has a different ordinate scale from figures 26(a) and (b).

From these figures, it can be seen that both the internal and external emissivities
can affect the heat-transfer rate. The heat-transfer rate is more sensitive to changes in
emissivity at low values of emissivity than at high values. As the external emissivity in-
creases, more energy is radiated to the surroundings. This, in turn, reduces the tem-
perature gradient at the colder end of the strut thereby lowering the conducted heat-
transfer rate. In these cases, the surroundings were taken to be at zero temperature.
Increasing the internal emissivity causes an increase in the heat-transfer rate at the
colder end of the strut in a twofold manner. First, as the internal emissivity increases,
the temperatures along the strut increase. This increases the thermal gradient at the
colder end which results in an increased conducted heat-transfer rate. Second, for
closed ends, increasing the internal emissivity increases the amount of radiant energy
which is absorbed by the end of the strut.

In the next series of figures, the temperature profiles are given as a function of ex-
ternal emissivity for constant values of Z/dL. In figures 27(a) to (c), the nondimensional
temperature is plotted as a function of axial position. For all of these figures, the in-
ternal emissivity is held constant at 0.6 while the Z/dL changes for each figure. By
comparing these figures, it can be seen that as the radiation to conduction parameter in-
creases, the temperature profile departs more from the straight line which would occur
if conduction were the only mechanism determining the heat-transfer rate. In each of
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these figures, increasing the external emissivity causes an increase in the thermal gra-
dient at the warm end of the strut and a decrease in the thermal gradient at the cold end.
It should be noted that the thermal conductivity varies greatly between materials. There-
fore, the values of the radiation to conduction parameter are strbngly dependent on the
strut material used. The values of this parameter which are shown on figure 27 were
formed using a thermal conductivity representative of fiberglass.

Generally, it is desired to minimize the heat-transfer rate to the colder end of the
strut. Returning to figures 26(a) to (c), it can be seen that reducing the internal emis-
sivity of the strut reduces the heat-transfer rate. If the inside of the tube were filled
with a very low conductivity material, the effective internal emissivity would be zero and
the added heat transfer due to the conduction of the filler would be small. Also, if radia-
tion barriers were placed along the length of the tube, the strut would be divided into a
series of nearly isothermal compartments and the effective internal emissivity would be
reduced.

In appendix D, it is shown that when the internal emissivity is zero and when emis-
sivity and conductivity are taken to be independent of temperature, the temperature pro-
file, and, consequently, the heat-transfer rate for a thin-walled tube seeing a zero-
temperature environment can be expressed by two parameters. One of these parameters
is the ratio of the boundary temperatures, and the other contains various specifications
of the strut. The second parameter (k) is onTglz/ kt and is dimensionless.

Figure 28 presents the ratio of the temperature slope at the colder end of the strut to
that obtained by considering conduction only. This is done for an internal emissivity of
zero. The data are presented as a function of « and various temperature ratios. The
ordinate of figure 28 can be directly related to the heat transfer out of the tube. The
heat-transfer rate out of the tube considering the effects of emissivity is kﬂdot(dT/dx)
while the heat-transfer rate, when only conduction is considered, is kwdot(T2 - Tl)/l .
Increasing k decreases the heat-transfer rate. The effects of this parameter become
more pronounced as the temperature ratio decreases. When the ordinate of this figure
becomes negative, heat is being transferred into the strut from both ends and is dissipa-
ted to the surroundings along the length of the tube.

In figures 29(a) to (¢), temperature ratio is plotted as a function of axial position for
various values of k. In each of these figures, the temperature ratio is held constant;
and it can be seen that as k increases, the temperature profiles become more dis-

torted. As k increases, the temperature along the strut becomes lower. If the tem-
perature ratio is sufficiently low and « is sufficiently high, the temperature along the
strut can fall below the colder end temperature. Under this circumstance, heat is trans-
ferred into the strut at both ends.
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CONCLUSIONS

In this report, the thermal analyses of both a system of shadow shields and a struc-
tural member have been carried out. It has been shown that the shadow-shield analysis
developed herein is capable of accurately predicting the behavior of shadow-shield sys-
tems. The effects of emissivity and spacing ratio on the heat-transfer rates have been
shown. This has been done for a system consisting of up to several shadow shields. This
report shows that the effectiveness of shadow shields is most pronounced when the emis-
sivity of the surface is low. By targeting shadow shields, large changes in the tempera-
ture profile of the shields can be achieved. This can be done with only a moderate change
in the heat-transfer rate and may be advantageous in reducing the heat transferred by
conduction through the strut if the shields are thermally connected to the support struc-
ture. In some cases, the heat-transier rate will be lowered when targeting is applied.

In addition to protecting a cryogenic propellant, shadow shields may be used to pro-
tect a payload or other body from incident solar energy. Here again, shadow shields can
be effective in reducing the heat-transfer rate especially when the emissivities of the sur-
faces are low.

The effects of having specularly reflecting surfaces have been examined for the sim-
plifying case of surfaces with uniform radiosity. It has been shown that with this as-
sumption specularly reflecting surfaces yield a higher heat-transfer rate than diffusely
reflecting surfaces. The percentage increase due to specular reflectance increases with
increasing shield spacing.

The effects of nonuniform radiosity for diffusely reflecting surfaces have also been
examined. It has been shown that for reasonable shield spacings the possible error due
to assuming uniform radiosity surfaces can be significant. This error is often greater
than the error which would result from treating specularly reflecting surfaces as dif-
fusely reflecting surfaces at the same spacing. For a more complete understanding of
the behavior of specular surfaces, an analysis which would account for both specular re-
flectivity and nonuniform radiosity is necessary.

The ability of the thermal analysis for a structural member to predict the behavior
of an actual strut has been examined. By taking advantage of the external emissivity of
the strut, the rate of heat transfer through the strut can be greatly affected, even to the
point of becoming a negative value. The thermal interaction between the shadow shields
and their support members would also be needed for a more complete understanding of
the entire system.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 3, 1968,
124-09-05-12-22.
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APPENDIX A

SYMBOLS

area of a radiating surface
cross-sectional area of an element on the strut

absorption factor - the fraction of energy which leaves the ith surface and is
absorbed by the jth surface

diameter of the strut
view factor between specular surfaces

diffuse view factor between the ith

and jth surfaces
incident energy per unit time and area

step size

constant used in appendix B

thermal conductivity

spacing between surfaces in the shield system

length of the strut

shield number or the number of steps in the solution of the differential equation

number of annuli on a shield or the number of elements into which a strut is
divided. This symbol is also used as a subscript.

heat-transfer rate to a whole surface
heat-transfer rate to an element

thermal resistance between annuli

radius of a shield

radial distance

absolute temperature

shield thickness or thickness of a thin-walled tube
emissive power per unit area of an element
distance along the strut

absorptivity

solar absorptivity

19



61]'

m

D I v

(o

@

angle of incidence or reflection
Kronecker delta; equals 1 when i =j; equals 0 if i #j

emissivity

number of terms used to approximate the finite series

number of times energy has been reflected off an adjacent surface
nondimensional temperature along the strut

e To1?

radiation to conduction parameter for the strut,
kt

transformed independent variable in the strut equation
a constant

reflectivity, p =1 - «

Stefan-Boltzmann constant

solar flux

The following matrices and vectors are used:

C

el

20

k-by-k matrix whose elements are the fraction of energy which leaves the qth

th
f C =f -
surface ( )qp qppp qu

n-by-n matrix whose elements are the sum of the entries in ¥ and ¥¢ which
refer to the annuli of the shield times the emissivity of the annuli
c c
+ (¥ )pqep
column vector of size k whose elements are the emissive power of each surface

4
=W = A
(E)p pAp O'Epr p

surface and is reflected by the p

(D)pq - (‘Ir)n+p, n+q n+p

identity matrix (I)pq = qu

column vector of size n with entries containing the radiant heat transfer from
each element of the shield from known temperature surfaces

column vector of size n whose elements contain the heat transfer away from each

annulus of the rnth shield

k-by-k matrix whose elements are the absorption factors (U)pi = Bpi in the shield
system

column vector of U in the shield system (ﬁ)p = B . and a vector containing the
absorption factors divided by the area of the differential element in the strut

B..

1

A

system (14 )i =



k-by-k matrix whose elements contain the negative of fraction of energy absorbed

by a f v =-f
y a surface ( )pq ba%q
v " column vector of V in the shadow-shield system (v)_ = -f .@. and a vector
containing the negative of the fraction of energy absorbed by a surface in the
€.
strut t v = -f, 3
rut system (V)p ipy
p
Y n-by-n matrix containing the coefficients of the temperatures when the equations
are linear in temperature
Z column vector of size n containing (Z)j = o'AjT:;1
© column vector containing the temperatures of the annuli of the shield or the tem-
peratures along the strut
P column vector of size k whose entries contain the heat-transfer rate to each
annulus in the system
X m-by-m matrix whose entries contain the temperature coefficients in the solution
to the differential equation
T k-by-k matrix definedas ¥ =0U -1
Q column vector of size m, the entries of which are the values of the second de-
rivative in the differential equation
Subscripts:
¢ conductive heat transfer
i any surface in the system
in heat transfer towards the surface
j particular surface under consideration
k total number of elements in a system. Equals 2n + 1 for a shield system and
n + 2 for a strut system.
n number of annuli on a shield or segments of a strut
o] outside surface of strut
out heat transfer away from the surface
p,q dummy subscripts denoting any element in a matrix or vector
r radiant heat transfer
5 shield
sr surroundings
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T total heat-transfer rate through the strut or the total spacing between sources

L inside surface of the strut

1,2 each of the two sources or each end of the strut

Superscripts:

C complimentary system composed of the mth and mth + 1 shields and their
surroundings

* source for which the heat-transfer rate is given has a zero temperature

! source for which the heat-transfer rate is given is the only source of thermal
energy in the system

+
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heat-transfer rate is a ratio to the case of uniform radiosity and diffusely reflect-
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APPENDIX B

DERIVATION OF SHADOW-SHIELD EQUATIONS

The following derivation for determining the temperature distribution for a system of
shadow shields follows the work of Gebhart given in reference 10. Heat balances are for-
mulated which consider radiation and radial conduction. The steady-state temperature
distribution for each shield is determined from the heat balances, since there is no net
heat transfer to the elements of the shield or the shield as a whole. The properties of the
shields are allowed to be functions of the shield temperatures. This results in an itera-
tive solution. In order to avoid matrices of cumbersome size, the temperature distribu-
tion for each shield is determined assuming that adjacent shields and surroundings have
known temperature distributions. As the iterative procedure converges, the assumed and
calculated temperature distributions become nearly identical.

Figure 30 gives a schematic of a shield bounded by two other surfaces and the sur-
th shielq, it is
- 1 shield are known. Each
th shield) are divided
into n elements. Because surface properties are assumed constant in the circumferen-

tial direction, the elements are a series of concentric annuli. Both surfaces of the jth

roundings. In the derivation of the equations for the temperature of the m

th th

assumed that the temperatures of the m~ + 1 and the m

of the four surfaces (there are two surfaces to consider for the m

element of a shield have the same temperature and area, but not necessarily the same
surface properties. The temperature of both sides of the shield are the same because it
is assumed that there is no axial temperature gradient.

The total rate of heat transfer to the jth element on the mth shield is the sum of
the radiant heat transfer occasioned by the shield seeing the mth +1 and mth -1
shields plus the conducted heat transfer from the jth -~ 1 and the jth + 1 elements of the
m'? shield to the jtB
emitted radiation from both surfaces of the element.

element. The rate of heat transfer away from the element is the

The shield temperatures are determined by constructing two closed systems as is
illustrated in figure 31. The first system consists of the mth - 1 shield, the mth
shield, and the surroundings enclosing these two shields. The second system consists of
shield, the mth + 1 shield, and the surroundings enclosing these two shields.
The m shield forms the common boundary for the two systems. The temperature of
the boundary must be the same when viewed from either system. If the enclosures do not

th

represent physical surfaces, they are nonreflective.

There are n elements on each surface of each system. Therefore, there are
2n + 1 elements in each system. The manner in which elements were assigned sub-
scripts is also illustrated in figure 31. Each element in a system is assigned a unique

subscript; therefore, it is not necessary to distinguish elements on the mth shield from
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those on the other surface with an additional subscript denoting the particular shield.
The net rate of radiant heat transfer away from the jth element is:

A

j=WjAj -BleIAI BZjWZAZ - B3jW3A3 - .. _BkjWkAk where k=2n+1 (B1)

b

th

Wi is the emissive power per unit area of the i*" element, and Bi' represents the
.th

fraction of energy which is emitted from the ith surface and is absorbed by the j* sur-
face. It is assumed that the radiant energy is uniformly distributed over each of the ele-

mental surfaces, and that each of the surfaces emits and reflects energy diffusely. There-
fore, Bij can be found in terms of the other B's. The following equations give this rela-

tion.
B1j = fljaj + fllplBlj + f12p2B2j +. ..+ flkpkBkj
Bkj = fkjaj + fklplBlj + fk2p2B2j + ..+ fkkpkBkj

This set of linear algebraic equations can be rewritten as:

(plf11 - 1>B1j +PofyaBy; + - - -+ Pyl By = 1),
Pifa1By + <p2f22 - 1>sz to g By = -Ips0
PyfpyByj + PafiaBa; + - - - + (pkf - 1>Bkj = £

These equations can be rewritten in matrix form for each j. This gives:

Ci=v (B2)
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where

and

v), = -f .o,
( )q qa ]

The heat-transfer balance can be taken for each of the other elements in the system.
The coefficient matrix C is independent of the surface for which the heat balance is taken.
The entire k2 set of algebraic equations can be represented in terms of k-by-k matrices.
The matrix equation for this is:

CU=V (B3)
Each of the matrices have the following values in their respective elements:

Dpq = Bpq

-f

Mpq = “Tpq%

and the coefficient matrix C remains the same.
Solving for U yields:

U=Clv (B4)

The entire process can be repeated for the other system. And an equation similar to
equation (B4) can be written for this system.
c c -1 ¢
Ut=(c®) v (B4

The surface properties and the spacing between surfaces are not necessarily the same in
each system. Therefore, there is no necessary correspondence between the systems.
In general,
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c#£c°t
U #U°
vV £V©

Equation (B1) can be written for each of the elements in each of the systems. For the

system containing the mth shield and the mth - 1 shield, these equations are:
“Qp 1 = (B11 - 1)W1A1 +BgWohy + . . . + B WAL
-4y 5= ByaWiAy + (1322 - DWohg + . . . + BoW AL
"y = ByWiAy + By Wolhy + . .+ (B - HWA,
These equations can be written in matrix form giving:
&=VIE (B5)

Because the indices are reversed, it is the transpose of the coefficient matrix which is
used in the matrix equation. & is a column vector whose elements represent the net
radiant heat transfer to each of the surfaces in the system. Each of these matrices are
made up of the following elements:

(\I’)piz(U)pi_épi or ¥=U -1

((I))i = _qi

4
= A =
(E)p = WAy = 0Ty

th t

For the other system involving the m~ and m h 1 shields, it is possible to

write the heat-balance equations. These equations in matrix form are:
8¢ = (1°) E (B5")
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The m'D shield is common to both systems, and the temperature of each annulus of
this shield is the same when viewed from either system (Ai = Aic and Ti = Tic, where i
represents any element of the mth shield). However, because the surface properties as
well as the spacing between surfaces may be different in each system, there is, in gen-
eral, no correspondence between equations (B5) and (B5*) so that

3 £ 3
v© £ ¥
EC£E

It is desirable to maintain a system of linear equations. Radiation terms in the heat
balances are linear in T4, while conduction terms are linear in T. In this appendix,
equations are given which are linear in T4. The conduction terms are considered known
during an interation and are recalculated after every iteration. When the conduction
terms are relatively large compared with the radiation terms, it may be advantageous to
solve a system of equations that are linear in T. In appendix E, equations, which are
linear in T, are presented for determining the temperatures of partially conducting
shields. Either form of the solution should yield the same result since each is iterative
in nature so that at the final iteration the terms that were assumed known are truly

known. The heat-transfer rate to the jth element by conduction is
T. -T. T. - T.
e, j = AL+ ] (B6)
Ri+1,i  Rj-1,j
A is the thermal resistance between the jth element and an adjacent element
s
Inf —
g
= where i=jz1 (B7)
)] 2kt

In each of the systems considered, only n of the k elements are for the mth

shield. It can be seen from figure 31 that for the system containing the mth and

mth - 1 shields the elements for the mth shield are the nth + 1 tothe 2n elements.
For all of the other 2k - 2n elements in the two systems, temperatures as well as emis-
sivities and, therefore, reflectivities are considered known.




Equations (B5) and (B5") can be added together and rewritten so as to separate the
knowns from the unknowns. Our interests are in determining the temperatures of the 2n
elements common to both systems. The algebraic equations which result from the addi-
tion of equations (B5) and (B5') are:

n

(q))n+1 + (q’c>1 = Z (‘I')p,n+1(E>p * i (‘I’c>p, I(Ec)p + (‘I’)k, n+1(E)k

p=1 p=n+1

* Z <‘If)p,n+2(E>p + <\I,C)p’2<Ec>p - (B8)

k-1

oY @), e, ¢ j;“l(wc)p,n@%

p=n+1

J

1t should be noted that in the equations of (B8), because of the order in which the sub-
scripts were written, the transpose of ¥ or ¥° was not used.

For each of the algebraic equations of (B8), the first three terms to the right of the
equal sign are for elements with known temperatures. Since there is no net heat transfer
to any annulus of the shield, the two terms on the left side of each equation equal the rate
of heat transfer away from the annulus by conduction

(‘I)>n+i + (‘I)C)i =i
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If the shield does not have a uniform temperature, it is convenient to write equa-
tion (B8) in matrix form. The algebraic equations become:

Q=DT7 (B9)

Equation (B9) is composed of an n-by-n matrix DT and two vectors, each containing n
values. (Q)i represents the heat transfer away from the ith annuli of the mt shield
due to conduction less the radiant heat transfer to the annuli from all of the surfaces
whose temperatures are known

Ot 2 O,y S 6, 5, - O 1B

p=n+1

(Z); is an entry of a column vector and has the value crA].Tj4. D is an n-by-n ma-
trix containing the entries:

(D>j,i - (‘I'>n+j,n+i€n+j * <‘pc>j, ich

The transpose of D can be written in terms of the matrices containing the absorption
factors. This yields:

(DT)i,j - KU)n+j,n+i - 6j,i]€n+j * [<Uc)j,i B 6]',1:163'0

and ejc both refer to the jth annulus of the mth

In these equations, €n+j shield,
but each must be taken from the appropriate system. A]. and Tj are the same in both
systems.

When one of the sources is solar radiation, the energy which is absorbed on the out-
ward facing surface of the jth element is <ijoz where ¢ is the incident solar flux,
and aq) is the solar absorptivity. For flat disk shields, A. equals the area of the annu-
lus. However, if solar energy is incident upon a curved surface Aj’ in this instance
only, represents the area of the projection of the surface element into a plane perpendicu-

lar to the solar flux.

The heat transfer away from the jth annulus when a solar flux is present is:
k
_ _ _ c C
(Q)i - qc,i ¢Aia¢ Z (‘If )p,i(E )p
p=n+1
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Also, when solar radiation is present, the outer shield is not bounded by either surround-
ings or another surface.

Therefore, none of the energy which leaves the surface in the

direction of the solar flux is returned to any annulus of the shield. Under this circum-
stance, the matrix D has the entries:

(D)j,i =05 j€nyj ¥ (‘I’c)j,iejc

Equation (B9) can be solved for the vector Z to give:

Z = (DT>_1Q

1lus can be found from the various values of Z

_ (2);

=5 (B10)
]

The temperatures of each ax

1/4

When the temperature of the shield is uniform, equation (B8) can be utilized directly

to find the shield temperature. Since there is no net heat transfer to the shield as a
whole, the following equation can be written:

n
Z [(‘f’)nn ¥ (‘I‘C)J =0 (B11)
i=1
The sum of the equations given by equation (B8) can be written as:
n n k
2 iyt D (59,15, + i male
i=1 | p=1 p=n+1
n k-1 n
=2 120 D)+ 2 ()6 e
i=1 |j=n+1

=1

All of the quantities on the left side of this equation are known.

The shield tempera -
ture can be factored out of the right side of the equation.

This yields:
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=

©) @), + pi (59, (9, + (D anl®)s

4 =1 =n+1
T = —_= (B13)

ol n
o z; zl: A [<‘I')n+j,n+i€n+]' " <‘Itc) 3’163{]
= j=

i

=]

When there is solar radiation present, the temperature of an infinitely conducting
shield can be found from the amount of solar radiation absorbed by the shield as a whole.
The shield temperature is found from the following equation:

n k
- Z oA, + Z (‘I’C)p,i<Ec>p
4 i=1 p=n+1
T, = - —— (B14)
n 1
"Z ZA;i K"c%’,iejc i,j€n+j]
=1 | j=1

When the conducted heat transfer to an element (qc’ j) is zero so that the shield is
either nonconducting or the shield has a uniform temperature, and all properties are in-
dependent of temperature, the equations for determining the temperature are linear in
T4. When the equations are linear, the shield temperature and heat-transfer rates can be
found by summing up the contributions of each source separately.

If there is no heat transfer between the elements of the shields, entries of the vector
Q in equation (B9) can be portioned into two parts with each part being the negative of the
heat transfer to the element due to one of the sources. Since the matrix D is a function
only of the surface properties of the sources and not their temperatures, the values in the
vector Z are proportional to the magnitude of the entries of Q. The entries of Z are
oAiT?. T4 for every element can be found by summing the contribution due to each
source.

Similarly, the heat-transfer rates due to each of the sources appears in the numera-
tor of equation (B13) in a linear combination. Therefore, if the shield has a uniform tem-
perature, this temperature can be found by summing up the contributions due to each
source taken separately.

When the equations are linear and there is only one source with a finite temperature,
the shield temperatures are porportional to this temperature. The heat-transfer rates
are proportional to this temperature raised to the fourth power. In this way, if the source
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temperature is doubled, the shield temperature will also double while the heat-transfer

rate will increase by a factor of 16. The additive procedure, when the case resolved it-
self into a linear problem for a single shield between two sources, is illustrated as fol-

lows:

T =0 T=Ty T=Ty

4 4 4 .4 & a4 4
TS—T1+TS'TSZ_TS" To1 *+ T2
YT . " X "
Q=Q Q=Q Q=Q +Q
T=T1 T=0 T=T1

The procedure can be extended to the situation in which more than one shield is present.

The heat-transfer rate into the jth

heat-transfer rates and equals zero

element is the sum of conduction and radiation

c _
de,j *9r jon * 9= 0

Substituting values from equations (B1) and (B6) gives:

T, -T.) (T, ,-T,) <&
D] (N R RN
1+1,] i-1,] p=1

So long as the ratio of the radii (ri/rj where i=]j + 1) stays constant, the thermal
resistances are not a function of the radiating area. Each term on the right side of equa-
tion (B15) is proportional to the radiating area. However, for a linearly scaled system in
which the spacing ratio (L/R) between surfaces remains constant, a reference area A
may be factored out. Since it is assumed that the projection of all surfaces is circular,
this reference area is proportional to its lateral radius squared (A1 OCRf). When all prop-
erties are independent of temperature, it is convenient to express temperatures as a ratio
to a reference value T,. Physically, A1 could be the area of a cold source, while Ty
could be the temperature of a warm source. Equation (B15) can be nondimensionalized to

give:
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4
. T. - T, . . - T,
L 1 rJ Jil ] + In r]+1 T]-l J =K <\F) .€ A_p_ T_p.
p,n+] p
p=1
4
AC /1€
. (\I,C) P i (B16)
P30 5 \1,

K is a nondimensional constant determined by the shape of the reference area Al' For
a plane source

. r.
K=0.5In{ 3t ) in{_3_
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APPENDIX C

HEAT TRANSFER BETWEEN SPECULARLY REFLECTING SURFACES

The purpose of this section of the report is to present the relations used to determine
the shield temperature and heat-transfer rates for diffusely emitting, specularly reflect-
ing surfaces of uniform radiosity. Because of the assumptions of uniform radiosity and
uniform emittance, there is no thermal gradient in the shields.

The equations for the heat-transfer rate between two plane specular surfaces having
uniform radiosity (diffuse emissivity) are given in reference 11. The sources appear
mirror-like so that the view factor between surfaces is a function of the number of re-
flections encountered by the bundle of energy. Figure 32 gives an illustration of the way
the apparent spacing increases due to each reflection for the specular surfaces. The sur-
faces numbered 1 and 3 are specularly reflecting, while the other two surfaces are simply
windows to let the radiant energy escape. The apparent spacing for the direct view factor
from 1 to 3 is the actual spacing between 1 and 3. The apparent spacing for the view fac-
tor from 1 to 1 after being reflected off 3 is twice the actual spacing. Thus, the energy
appears to be coming from the dashed surface immediately to the left of surface 3. Fig-
ure 33 is a schematic of a shield and two sources. The surfaces are specular so that the
angle of incidence equals the angle of reflection (8 = B8').

The net heat transfer away from a surface is:

—oeT? - aH (C1)

> |-

where H, the incident energy per unit time and area, is composed of two parts. The
first part is the energy from the other surface, and the second is the energy from the
surface under consideration which is incident on itself after it has been reflected off the
other surface. For surface 1:

4 2 2 4
H; = 0egTg E’H,s +F1o301,3P1P3 * F1,3(1,3,1,3P1P3 + - - ] +o€Ty [F1, 1(3)°3

2 3 2
+Fi1s,1,3P3”1 " F1,1(3,1,3,1,3)P3P1 * - - ] (C2)

The view factor from surface 1 to surface 3 is used so as to have only one area (A 1)
in the equation. This is done by the use of the reciprocity theorem which states that:

Fi,381=F3 183

b
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Rewriting equation (C2) in terms of an infinite series gives:

0

[~ )
- 4 N7 4 n,n-1
Hy = 0€3Ty Fy 317, 3MPiP3 +9¢; Ty Z Fyi 13", 17" 4yr3eq (C3)
=0 n=1

The view factor between two disks is given in reference 1 and the view factor is a
function of the spacing ratio F = g(L/R). As the apparent distance between the shields
increases due to an increasing number of reflections, the view factors decrease due to the
widening distances between images. Returning to figure 32 shows that the direct view
factor between a pair of surfaces (Fl, 3) is a function of the actual spacing between sur-
faces Fl, 3= g(L/R). The view factor from a surface to itself as seen in the other sur-
face (Fl, 1(3 ) is a function of twice the actual spacing between the surfaces Fl. 1(3)
= g(2L/R). The view factor after two reflections from the opposite surface is a function
of three times the actual spacing Fl, 3(1,3) = g(3L/R). In general

Fl, 3(1"7, 377) = g((zn + 1)L/R)

and
_ n
Fl, 137, 117—1) = g(2""1L./R) for n>0 (C4)

Equation (C3) is evaluated by taking a large number of terms in each of the series and es-
timating the remainder. The terms in the remainder are estimated by assuming the re-
mainder forms a geometric series. For a constant view factor, the remainder would be
exactly a geometric series. The value of the parameter in the geometric series is the
ratio of the two final terms. Equation (C3) is approximated as:

: i
¢ €+1 €+1
N . oo\ Fi 3<1§+1 3§+1)p1 P3
H, = ce,T F n gMPiPg) + T 7
1 33 1,3(17,3NF1P3 F (§’+2 C+2)p P
7’]:0 1 - 1,3 1 ,k’j‘__l_%
] Fl, 3<1§’+1’ 3§’+1) i
: _
1¢
F e+1 )p3tp
*oeTy Z <Fl,1(377 117Pe] > » Pl )
=1 - F1,1(52 180
] Fra(st1,18) |
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The value of £ was chosen so that the remainders (the last term in each bracket)
were less than 0.1 percent of the first term in the bracket which is the value found by
summing over €.

A shield placed between two sources has no net heat transfer to it in steady-state con-
ditions. This fact can be utilized to determine the shield temperature. Figure 33 gives
an illustration of a single shield placed between two plane sources. The four-surface sys-
tem is divided into two two-surface systems, and the heat-transfer rate to the surfaces of
the shield can be found in terms of the source temperature for each system. The sum of
the heat transfer to the shield from both systems is zero and the shield temperature is

determined.

36



APPENDIX D

DERIVATION OF THE DIFFERENTIAL EQUATION FOR
A STRUCTURAL MEMBER

The equation giving the temperature distribution along the strut is derived by con-
sidering the heat balance on an element of the structural member. Figure 34 gives a
schematic of a strut. Heat enters the element by conduction from the warmer adjacent
element and leaves by means of conduction to the colder adjacent element. Heat is trans-
mitted to or from the element by radiation on both the inside and outside surfaces of the
element.

The rate at which heat enters the element due to conduction at the position x on the
strut is given by:

-ka Sil

qin,c = dx

- -1_’{((12 - d2>QE (D1)

X
The rate at which heat leaves the element due to conduction at x + Ax is given by:

_ dT
Qout, ¢ = -ka;

-y

X+AX X+AX

Since the environment is assumed black (esr = 1), energy which is emitted or re-
flected from the outside surface of the strut is absorbed by the surroundings and cannot
return to any part of the strut. The rate at which heat is absorbed by the element due to
the surroundings is given by:

- 4 _ 4
%n, sr = 06srAsrfsr-szrozo - orAsrfsr—szrOlo
The reciprocity theorm for view factors yields the relation:
Agrfsrx = Bxlxosr = Mo AX Iy oy
The view factor from the element to the surroundings (fx—sr) is unity.
The rate at which heat is radiated from the outside surface toward the surroundings
is oneodo AXx T4. It is assumed that the surfaces are gray; therefore, €,= - The

net rate of radiant heat transfer from the outside surface of the element is therefore:
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qout, r s

= ond € Ax (T4 - T4r> (D3)

The net rate at which heat is absorbed on the internal surface due to radiation from
the rest of the strut is found by Gebhart's solution for problems of radiant interchange in
an enclosure. This method has been described in appendix B,

In attempting to determine the temperature distribution along the strut, a differential
equation is derived. In deriving the equation, the limit is taken as the area for radiant
interchange approaches zero. The view factor to an infinitesimal area from another sur-
face approaches zero, though the view factor from the infinitesimal area to the surface is
not necessarily zero. It is desirable, therefore, to express view factors as going from
the infinitesimal element to the other surface rather than going from the other surface to
the infinitesimal area.

The net radiant heat-transfer rate for the internal surface is found by dividing the
strut into n +1 sections. One of these sections is the element under consideration and
the size of this element approaches zero. Physically, this represents the division of the
strut into n sections. The amount of radiant energy which leaves the element and is
later absorbed by the element goes to zero as the size of the element decreases. If j
represents the element under consideration, this last statement is equivalent to saying
that B.. approaches zero in the heat-transfer balances. (The mathematical justification
for this is shown at a later stage in the development of the equations.) In addition to the
n physical sections of the strut, there are two additional sections necessary to complete
the enclosure. These two sections are the end disks of the strut.

The set of algebraic equations for the n + 2 nonzero values of Bij for the heat-
transfer rate to the jth element are:

Blj = €jf1j +,01f11Blj +p2f12B2j + ... +pkf1kBkj
r (D4)

where k=n + 2,
These equations can be rewritten as:
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(plfll - 1)B1J. +Pgf19Bos + - - +yfy By = ety

pleIB1j + (p2f22 - l)sz + ... +pkf2kBkj='€jf2j

plflelj + pszszj + ... +<pkf - 1>Bkj = _Ejfkj

The reciprocity theorem for view factors gives:

If each side of every equation is divided by A. and the view factors on the right side are

transformed so that they are from the jth element to another source, one obtains:
B B B £ )
1j 2] ki - _ Syt
P1fi4 - 1)—=+pofig —+. . . +p L, —2=-
(111 )A. 212A. K1k "5 A
] ] ] 1
. B,. B,.. e.f.
1j 2j K] jj2
Pfoy —2 +(pofgg - 1)—2+ . . . +p Ly —%=-
121 . (Pat2z )A. K2k 'y A
J ] j 2
\
B,. B,. B e.f.
1j 2j kk _ jik
plfkl — + szkz —+ . . .+ <pkfkk - 1)—— = -
A. A. A. A
J J i k J

These equations can be placed in matrix form

Cu=v

where C is a coefficient matrix and is independent of j. The entries of C are:

(©)pi = Pifp; = Opi

(D5)

(D6)
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v is a column vector with the entries (v) = -(e.f. )/A_. u is a column vector which
contains the values of Bij /Aj' u is found from equation (D6) by taking the inverse of C

a=cly (D7)
The net heat-transfer rate to the jth element due to internal radiation is:
k
_ 4
Un ¢ = El Bij(E)i - <1 - Bjj>crAjTj € (D8)
i=

It should be noted that E contains only entries for the finite area elements, and there-
fore the emissive power of the element under consideration (j) is not an entry in E.
Equation (D8) can be expressed in terms of the column vector u to give:

k
_ Z : - o 4
G ¢ = A]. (@);(E);|- (1 BJ.J.)crA].Tj €

i=1

If Bjj had been included as the k + 1 equation of (D4), the above equation would be:

k
= 4 4 2,
Gin, r = Aj E (u)i(E)i - (rTj &5+ GTj ejAj (u)k+1 (D9)
i=1

A. is the internal surface area of the element under consideration (’/TdL Ax). In sub-
sequently forming the differential equation, the right side of equation (D9) is divided by
Ax and the limit is taken as Ax approaches zero. When this is done, the last term in
equation (D9) goes to zero. Therefore, the net radiant heat transfer into the internal sur-

face of the element is:
k
_ — 4
qin,r = 7TdL Ax E (u)i(E)i - OTj € (D10)
i=1

Equating the rate at which heat enters the element with the rate at which it leaves

gives:

%n,c ~ Yout,c = Yout,r ~ Lin, r (D11)

Expanding each term and collecting common factors gives:
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_ar
dx

kn(2 _ 2\[dT _ 4 Z
?(do dL)(& >— TO AX Tj (ejdL +€0d0> - €odoTsr - d (u)1A1€1T1

X X+AX

Taking the limit as Ax -~ 0 for both sides of the equation yields:

k(@ - &) &1 _ T4(6LdL +egdy) -

2 O 0 SI‘ : : (u)lAIEITl (D12)

dx

In equation (D12), the subscript j has been dropped. However, the entries in @ do de-
pend on the relative position of the differential element and the finite area sections.

The differential equation is integrated from zero to I where 7 is the length of the
strut. By letting & = x/l, the range of the independent variable is from zero to one.
Since dx =1d%, equation (D12) becomes:

k(@ -d%) 20 4
T T (eLdL + eodo> - eOdOTsr - Z (u)lAIelTl (D13)
do1 d¢

When the thermal conductivity and emissivity are independent of temperature, non-
dimensional temperature profiles can be obtained. Since both end temperatures
(T1 and Tz) are known, the dzlfferential equation has known boundary values. Dividing
each side of the equation by T2 yields:

2( T k

a4l -
k@ -d)) " \ry) /o)t T\ T, \
L= <€d +ed>-ed——— -d (u).A.e.l —
2 3 2 T L L 0 0 00 T L 1171 T
40l T2 d¢ 2 2 2
i=1
Letting 6 = T/T2 one obtains:
k@ - ) 2 4 2 :
2 3 9 =0 (eLdL + €odo> - Eodogsr -4, (u)1A1€191 (D14)
401 T2 d¢

The boundary conditions are 92 =1 and 91 = TI/TZ' Since the values of Gi are func-
tions of the temperature distribution along the strut, they are determined by 6.

When the strut is a thin-walled tube, the cross-sectional area is approximately wdt
where t is the thickness of the tube and d represents either the inside or outside diam-
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eter. For a thin-walled tube equation (D14) becomes:

k
kt d% _ 4 4 E: _ 4
9.3 .9 0 (ei + 6o) - €o0sp - (u)iAieiei (D15)

When the temperature of the surroundings goes to zero and the internal emissivity is
reduced to zero, equation (D15) becomes:

2.3 A4
2 gl"To€e O
ase _ 270 (D16)
dgz kt

The total heat-transfer rate out of the cold end of the strut is the sum of the conducted
heat transfer out and the radiant energy absorbed by the end disk. For illustration, con-
sider the end at which x equals zero. From figure 34 it is seen that the end disk is the
kth element in the system. The temperature of the strut at this end is T1 and for
closed disks Tk would probably equal Tl‘ The total heat-transfer rate is:

Qr=Q,+Q =kadl (By - 831 )®); (D17)

dx

TT'MW
L

x=0

Note that since the end disk is a finite area element, Bkk is not zero. In reference 10,

it is shown that €kBkiAk = GiBikAi for gray surfaces. Equation (D17) can be rewritten

as:

Introducing nondimensional parameters gives:

K
e z (Bki - aik)ei (D18)

£=0 i=1

4QT _ k(‘ig - d%) de

42 .39 dt
ﬂoTzdL oTzldL

For a constant internal emissivity € = €. The absorption factors Bki depend only on
the internal emissivities and Z/dL of the tube.
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APPENDIX E

SOLUTION OF EQUATIONS

The purpose of this appendix is to discuss the solution of the equations presented in
appendix B for the shadow-shield system and the equations presented in appendix D for the
thermal analysis of a structural member. -

Shadow-Shield Equations

In appendix B, equations are given for the shield temperature and concomitant heat-
transfer rates when the equations are linear in T4. As the conducted heat transfer in-
creases relative to the radiant heat transfer, it becomes more advantageous to solve the
equations for the shield temperatures assuming that the equations are linear in T. The
various terms contributing to the heat balance for an element are shown in figure 30. The
conduction heat-transfer rate into the jth element is given by equation (B6). The equa-
tions of (B8) give the radiant heat-transfer rate into each element of the shield. In steady
state, the net heat-transfer rate into each element is zero. Adding equations (B6) and (B8)

for the jth element gives:

Qg * (‘I’)mj + <<I>c>]. =0 (E1)

Expanding this equation and placing terms involving known temperature sources on the
right side yields for the jth element:

T. , -T.\ [T, -T, < <
» ; 1 "\ a ) Z (s, s Ehnet * Z (%), E)
i-1,j j+1,7] i=1 i=1
n k
- Z (\I'>p,n+j(E>p * (‘I'>k,n+j (E)k + Z (‘I’c)p,i<Ec)p

p=1 p=n+1

Factoring out the temperature of each element of the shield gives:
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i-1 7 7§ i+l i c c 3
+ |+ 2 [(‘I’>n+i,n+j€n+i+ (v >i,j€i] oA;T; Ty

S)CINCRITNCNS S NCN|

p=1 p=n+1

An equation can be written for each of the n elements of the shield. This results in

the matrix equation:
Yo =P (E2)
Y is an n-by-n matrix containing the entries:
o

. 5. .

_ c c 3 1 1 i,j+1 i,j-1
Wy,5 - [(‘I’>n+j,n+i€n+j = (), iej]"AjTj RS * * ¥

Zi-1,i #i+1,i) Zi-1,1 Fia,i

© is a column vector containing the temperature for each annulus
©); =

P is a column vector containing the negative of the radiant heat transfer to each annulus

from the sources with known temperatures.

=3 O+ D aalhr D2 69,6

p=1 p=n+1 ]

The temperatures are found by taking the inverse of Y in equation (E2). This gives:

=Y "P (E3)

The equation for the matrix Y can be expanded to give:
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<Y>i,j = {[(U>n+j,n+1 '6i,j:]En+j * [(Uc>j,i - 6i,j:|€]?} "AjTjs

8. .
1 +_1 + 1,]+1+

% j-1
i,j -
Zi-1,i H+1,i) Pi-1,1 Fisl,i

-0

When one of the sources is solar radiation, the matrix Y and the vector P become:

5. . 5. .

<Y> .= 4-05, € ..+ (UC>. -5, .:Ie.c oA T3 5. [ 1 . 1 ), i+l i1
i,] i,i"n+ i,i 7 7,5 i T LG T T 4 2

i-1,] j+1, ] i-1,i  #i+1,i

k

B =-onin, - 3 6, 69

From the equations presented above and those of appendix B, it can be seen that when
the equations are linear and only one shield present, the shield temperatures are deter-
mined explicitly. The equations can be nonlinear due to a finite shield conductivity or
temperature-dependent surface properties. When the equations are nonlinear or there is
more than a single shield, an iterative procedure is used. This iterative procedure sim-
ply sets a new trial value for each annulus of each shield at a value lying between the old
estimate and the latest calculated value. When the shields are conducting, the new esti-
mate lies close to the old estimate. The computer program chooses this degree of close-
ness so as to minimize computer time, but also insuring that the system of equations re-
mains stable. The tolerance used to determine when the iteration has converged is
0.0055 K (0.01° R). The difference between the calculated and estimated temperatures is
less than this value for each annulus of each shield at convergence. To insure that the
tolerance is sufficiently fine, the first case in each run is automatically rerun with the
tolerance halved.

When the conduction term does not enter into the equations, convergence is fairly
rapid. With a two-shield system and no conduction, about five iterations are required to
obtain a solution. The number of iterations increases with the number of shields involved
going to about 20 iterations for a four-shield system with no conduction. The number of
iterations required when the shields have a uniform temperature is about the same as
when there is no conduction between annuli. If there is conduction between annuli, the
number of iterations increases drastically so that a factor of 10 in the number of itera-
tions required would not be unexpected.

The execution time for the program is proportional to the number of iterations and
the number of shields involved. It is proportional to the square of the number of annuli
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into which each shield is divided. A two-shield configuration with conduction and 14 annuli
per surface would take about 2 minutes to execute on an IBM 7094 mod II digital computer.
If conduction were neglected, the execution time would be less than half a minute.

In order to obtain heat-transfer rates for surfaces of nonuniform radiosity, each of
the annuli should represent a differential area. To closely approximate this directly using
a computer would result in an exceedingly large amount of running time. The results for
nonuniform radiosity surfaces, which constitute the bulk of the data in this report, are ob-
tained by graphing the heat-transfer rate as a function of the reciprocal of the number of
annuli. This procedure is illustrated in figure 35. In this figure, the ratio of the heat-
transfer rate to the heat-transfer rate for uniform radiosity surfaces (a single annulus per
surface) is given as a function of the reciprocal of the number of annuli per surface. The
ratio refers to the heat-transfer rate to the colder source, and is given for two emissivi-
ties and two spacing ratios. The single shield was spaced evenly between the two sources
and all surfaces had the same emissivity. The point on the graph corresponding to an in-
finite number of annuli (1/n = 0) corresponds to the heat-transfer rate for surfaces of non-
uniform radiosity. The solid line represents points for which data were actually gener-
ated, and the dashed line represents an extrapolation. It can be seen from this figure that
the accuracy of the extrapolation decreases with decreasing emissivity. Also, it can be
seen from this figure that increasing the number of annuli (this results in increased com-
puter time) reduces the uncertainty in the extrapolation.

Thermal Equations for Struts

The differential equation presented in appendix D for the thermal analysis of a struc-
tural member is a second-order nonlinear equation with known boundary values. A finite
difference scheme is used to solve the differential equation. In this technique, the length
of the strut is taken as unity. The strut is divided into several equally spaced intervals,
each with an axial length h. The second derivative expressed in terms of the dependent
variable and the step size is

d Ti - Ti—l - 2Ti + Ti+1 (E4)
2 h2

Here i represents the particular point along the strut for which the differential equa-
tion is being approximated. Because the range of the independent variable is from zero to
one, h=1/(m +1). Where m is the number of interior points on the strut at which the
differential equation is evaluated. The first point along the strut at which the differential
equation is evaluated is a distance h from the end. Since this is a boundary value prob-
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lem, the end temperatures (T0 and Tm+1) are known a priori. There are m equations
of the same form as equation (E4) and these can be written in matrix form as:

Q=x0 (E5)
$ is a column vector of size m containing the evaluations of the second derivatives.

a2t

-p2___P
(W =h"—2 - (31, pT0 * 5 pTrme1) (E6)
dg

x is an m-by-m coefficient matrix containing the coefficients of the temperatures. The
entries of this matrix are clustered along the diagonal and have the values:

= -23 o) ) E
Mp, q p,q " “p,a+1 ¥ %p,q-1 (ET)
© is a column vector containing the temperatures at each node point
Q) =T E
©)g =T, (E8)

Equation (E5) can be solved to yield the temperature distribution along the strut. This
yields the equation:
O=x Q (E9)
Since the second derivative is dependent upon the temperature distribution along the
strut, an iterative procedure is used to determine the correct temperature distribution.

This iterative procedure is much like the one employed in the solution of the equations for
the shadow shield.
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APPENDIX F

COMPUTER CODE FOR SHADOW-SHIELD CALCULATIONS

The purpose of this section of the report is to discuss the computer code used to solve
the shadow-shield equations. The procedure for reading in the necessary data and the re-
sulting output are discussed. Following this are general descriptions of the various rou-
tines used to make up the code. Flowcharts are given for these routines. This appendix
concludes with a listing of the program and a sample output.

Description of Input

All of the necessary data enter the program through READ statements in the routine
INPUT. For every case in a run this routine is called by SHIELD. Whenever view factor
data for nonplanar sources are read in INPUT is called by TBVUF. All data enter the
program through the use of NAMELIST statements. NAMELIST is an input/output feature
of the FORTRAN IV language in which this code was written. The use of this feature is
described in FORTRAN IV manuals such as reference 12.

The NAMELIST input/output feature uses names in place of Format numbers in the
read and write statements. There are two names used in the reading statements of the
INPUT routine. These two names are INPUT1 and INPUT2. The first of these is used to
read in all of the data when there is only planar sources or solar radiation. When there
is one or more nonplanar sources present data are read in for view factors through the
use of the name INPUT2.

The necessary data are described in the listing of the routine INPUT. At the begin-
ning of a run, prior to reading any data, many input variables are assigned certain values.
This is done to reduce the amount of data which are read in. NAMELIST provides a flex-
ible means of entering data into core. It is not necessary to specify all of the variables
which are associated with a NAMELIST name, therefore, only those data necessary to
execute a case need be provided. There is no provision for storing data for more than
one case, so that at least one variable must be read in for each case in a multiple case
run. However, only the data which change need be specified for each case. The program
continues to search for new data until all of the input has been processed. (This program-
ming results in a warning diagnostic for the routine SHIELD at compilation.) Because of
the flexibility of NAME LIST, it is possible to inadvertently omit some of the data neces-
sary to run a case. This will result in either error messages during execution or erro-
neous results. The latter situation is the more troublesome of the two. In order to be
able to check the data, a listing of the input is provided at the beginning of each case.
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This listing may be more extensive than the input because it consists of all of the data
which have a bearing on the results. The sample case given at the end of the listing is for
two nonconducting shields and a planar tank. The outermost shield is exposed to solar ra-
diation. The variables required are determined from the listing of the routine INPUT.
The values used for each variable are found in the output.

Description of Output

The output from a successfully executed case is written by the routine SHIELD. A de-
seription of the variables printed out can be found by consulting the listing of this routine.
In addition to the expected output there may be additional output. Faulty data may result
in an illegal operation such as division by zero. The execution monitor will then print out
its own message. Faulty data may also result in the routine FACTOR encountering a sin-
gular matrix. If this occurs, an error message is printed and the run is terminated.

As mentioned previously, a large number of iterations is required when the shields
are partially conducting. If the number of iterations exceeds the value of the variable
ITMAX, a message is printed along with the last estimates of the shield temperatures.
When the shields are partially conducting, a solution may become divergent from a given
starting condition, or may become divergent due to the means used to calculate the solu-
tion. There are two starting conditions for partially conducting shields and these are
specificed by the variable IVCOND. These starting conditions are either uniform temper-
ature shields or nonconducting shields. The solution for partially conducting shields can
be found by assuming that the equations are linear in T or linear in T~ . The initial as-
sumption concerning the linearity of the equations is governed by the value of the variable
NCALCR. If, starting with the specified values for IVCOND and NCALCR, the solution
appears to be diverging, one of the variables is changed, and the case is restarted. If,
after the four possible combinations have been tried, the solution still appears to be di-
verging, the case is abandoned. Each time a change is made a message is printed. The
current values of IVCOND and NCALCR are stored in ICOND and NCALC, respectively,
and these values are printed as part of the message. All of these messages occur from
the routine SHIELD.

Whenever a case is run involving one or two nonplanar surfaces, a check is made to
insure that the necessary view factor data have been read in. This check is for the spac-
ing ratio between surfaces, the type of surfaces, the ratio of the axial radius to the later-
al radius for the nonplanar surfaces, and the number of annuli used. If the check fails,
an error message is printed from the routine TBVUF and the run is terminated.
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Description of Computer Code

This section of the appendix discusses the computer program which performs the cal-
culations of the shadow-shield equations. This program is composed of several routines
each of which performs a specific function. In the program, one of the sources is re-
ferred to as a heater and the other source is referred to as a tank. It is convenient to
describe the computer program using these terms for the sources. The following is a
brief description of each of the routines used in the program. Most of the routines have
an accompanying flowchart and following some of the routines is a list of the FORTRAN
symbols which correspond to symbols used in appendix B. The FORTRAN variables which
are needed as input are described in the listing of the program and are not repeated here.
Some variables are used throughout the program while others are limited to one or two
routines. The FORTRAN symbols which are used throughout the program are given after
the routine SHIELD and the others are given after the first routine in which they appear.
The list of FORTRAN symbols is not exhaustive but is limited to the major variables.
Accompanying the description of the FORTRAN variables is a key. This key describes
the subscripting of variables and is explained after the discussion of the routines FACTOR
and INVERT.

INPUT. - This subroutine reads in the necessary data. Al of the input to the pro-
gram enters through this routine. Figure 36 is a flowchart of this routine. The listing of

the routine contains a description of the input.

SHIELD. - This is the main program. One of the functions of this routine is to pro-
vide a means of controlling the calling sequence to the subroutines which perform the ac-
tual calculations. Also, the iterative procedure for calculating the shield temperatures
is done by this routine. With the exception of error messages, all output is generated in
this routine. Figure 37 is a flowchart of this program. The numbers in connectors or to
the left of a function block represent statement numbers in the program.

FORTRAN Variable in Description Key
name appendix B

AREA A The area of each annulus of each surface 1

AB a The absorptivity of each annulus of each 2
surface

EMS € The emissivity of each annulus of each 2
surface )

REF p The reflectivity of each annulus of each 2
surface

COND k The thermal conductivity between annuli 1
of a shield
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FORTRAN Variable in Description ‘ Key
name appendix B

RES 2 The thermal resistance between annuli of 1
a shield

T T The temperature of each annulus of each 1
surface

FNNHTT f The view factor from the surface of an 3

annulus facing towards the tank to an
annulus on a surface facing towards the
heater. If there are no shields present,
this is the view factor from an annulus
on the heater to an annulus on the tank

FNNTTH f The complement of FNNHTT except that this 3
is the view factor from an annulus towards
the tank to an annulus towards the heater

TBVUF. - This routine calls INPUT to read view-factor data when nonplanar sources
are present. These view factors were obtained using the computer program given in ref-
erence 13. This routine is set up so that all the data which are generated for nonplanar
surfaces may be kept together and read in as a unit. Figure 38 is a flowchart of this sub-
routine.

VUFACL1. - This routine calculates the radii and areas for planar surfaces and sets
up the call to the routines TBVUF and SUBVF in order to generate the view factors be-
tween annuli. VUFACI1 calculates the view factors between whole surfaces by summing up
view factors. Figure 39 is a flowchart of this routine.

SUBVF. - This subroutine calculates the view factors between planar surfaces. The
view-factor relations that are given in reference 1 are used in this routine. Figure 40 is
a flowchart of this routine.

SCHLC. - This routine calculates the temperatures of the shields assuming that the
temperatures of adjacent surfaces are known for each shield. Figure 41 is a flowchart of
this routine.

FORTRAN Variable in Description
name appendix B
PHI Q The solar flux
Q Q The rate of heat transfer to an annulus
from known temperature sources
D DT The matrix containing the absorption fac-

tors times emissivity
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COEF. - This routine determines the absorption factors for each system consisting
of two surfaces and the surroundings. Figure 42 is a flowchart of this subroutine.

FORTRAN Variable in Description Key
name appendix B
A C The coefficient matrix in the solution of 4

the absorption factors

Y Vv The matrix containing the negative of the 4
view factors times absorptivity

Al c1 The inverse of A 4

B U The matrix containing the absorption 4
factors

QDOT. - This routine calculates the heat-transfer rates to the tank as well as both
the adjacent surface and the surroundings between these two surfaces. Figure 43 is a
flowchart of this routine.

FACTOR and INVERT. - These two routines are used to invert a matrix. The meth-
od used is given in reference 14. Asgs a consequence of the way these two routines are

programmed, four warning diagnostics result at compilation.
Explanation of keys. -

Key
1 These variables are doubly subscripted. The first subscript refers to an annulus
of a surface. The first element is the innermost annulus. The second subscript
refers to the particular surface beginning with the heater. Thus AREA (5, 2) is
the area of the fifth annulus of the first shield.

2 These variables are triply subscripted. The first two subscripts have the same
meaning as the two subscripts for variables with a key 1. The third subscript
denotes the particular side of the shields. The side designated a 1 faces the
heater while side 2 faces the tank. Thus AB (5, 2, 2) is the absorptivity of the
fifth annulus of the first shield on the side facing towards the tank.

3 These variables are triply subscripted. The first two subscripts refer to annuli
on the originating and receiving surfaces, respectively. The third subscript re-
fers to the pair of surfaces involved. These subscripts are arranged in the same
fashion as the two previous keys. Thus, FNNTTH (1,10, 1) refers to the view
factor from the innermost annulus to the tenth annulus and is from an annulus of
a shield or source adjacent to the heater to an annulus on the heater itself.

4 These variables are doubly subscripted and represent matrices. The two sub-
scripts refer to the rows and columns of each matrix, respectively.
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$IBFTC INPUT

[aNeNeNe)

DECK
SUBRGUT INE INPUT (JR)

THE PURPQGSE OF THIS ROUTINE IS TO
PRGGRAM

READ IN ALL OF

THE DATA TO THE

EQUIVALENCE

LINE(L) sNELB) , (NE(21) ,NELT) , (NE(41) oNE2B) , (NE{61) ,NE2T)
2(NE{81) ,NE3B) , (NE{LOL),NE3T) , (NE(121)},NE4B) , (NE(L141),NE4T)
B3(NE(L61)yNES5B) » (NE{1BL1),NES5T) 4, (NA(Ll) ,NALIB) , (NA(21) ,NALT)
4{NA(41) ,NA2B) , (NA(61) ,NA2T) , (NA(B8Ll) ,NA3B) , (NA{101l),NA3T)
5(NA(121)4NA4B) » (NA(141},NA4T) , (NA(L61),NASB) , (NA{181),NAST)
EQUIVALENCE

1{CvaBS(1l) ,TBABS1) , (CVABS(S5) ,TBABS2) , (CVABS(9) ,TBABS3) ,
2{CVABS(13),TBABS4) , (CVABS(17),TBABSS) , (CVABS{(21),TBABS6) ,
3(CVABS(25),TBABS7) , (CVABS{29),TBABSB) , (CVABS(33),TBABS9)
4(CVABS(37),TBABSL) , (CVEMS(1) ,TBEMS1l) , (CVEMS(5) , TBEMS2) ,
5(CVEMS(9) ,TBEMS2) , (CVEMS(13),TBEMS4) , (CVEMS(17),TBEMSS) ,
6(CVEMS(21),TBEMSS) 4 {(CVEMS(25),TBEMS7) , (CVEMS(29),TBEMSS)
T(CVEMS(33),TBEMSI) , (CVEMS(37),TBEMSL)

EQUIVALENCE

1L(CvCOND(L1l) ,TBCON1l) , (CVCOND(S5),TBCON2) , (CVCOND(9),TBCON3) ,

2(CVCOND(13),TBCONS)

(CVCUONDI(17),TBCONS

)

=NE3B =NE3T

=NA2T =NA3B =NA3T

o W W W ¥ % W YN W W 9 WY ow

vy ATS(10)

DATA ( ID(I),I=1,10) /1H141H2,1H3,1H4y1H5y1H6y1HT741HB841H9,1HL /

DATA(DNE(I),I=1,12) /72H NEH =NE1B =NELT =NE2B =NE2T
INE4B =NE4T =NE5B =NEST = NET = /

DATA(DNA(I)yI=1,12) /72H NAH =NALB =NALT =NA28B
INA4B =NA4T =NA58 =NAS5ST = NAT = /

DATA (ODTEM(I)sI=1,2) /6H TH =,6H TT = [/

DATA CAHS , DATS / 6H AHS = , 6H ATS = /

COMMON C(1000)

EQUIVALENCE

1(C(1) ,ABSR ) , {(C{1l1l) ,ARES ) , (C(21) 4D )
2{C({31) ,ES ) 5 {C{41) ,IVCOND) , (C(42) ,ICONDR)
3(C(43) L,ITMAX ) , (C{51) ,NAH Y 2 (C(71) #NAT )
4(C(91) 4NA ) ¢+ (C(291)4NEH Y 4 (CU311),NET )
5(C(331)4NE ) ¢y (C(531),NCOND ) , (C(541),NCASE )
6{(C(542),NELIPS) , (C(543),NRADS )} , (C(544),NRNGS )
7(C(545) 4 NSHLDS) s (C(546)4NCALCR) 4 (C{547)4NVUFH )
8(C(548) 4NVUFT )} 4 (C(549),PHI ) » (C(550),PI1 )
9(C(551)4RS ) ¢ (C(561),RSH ) o (C(562)4RST )
A(C(563),4RH ) v (CU564),RT } ¢+ (C(565),SOLAR )
B(C(566),SIGMA )} , (C(567),TOL ) s (C{568),WI )
C(C{571),S50LARS) , {(C{591),STHICK} , (C(601),CVABS )
D(C(641)yCVCOND) » (C(68L1)4CVEMS ) 4 (C(T721),TH )
E(C{/41),TS ) 2 (CL751), 77 ) 9 (CLTTL),L,REFS )
COMMON / ELIPZ2 / FN 4 FL o RMHD , RMTD , XLOR , MXS
1 AHS(10) , F(100) 5 LIST , NR1

’
14
?
?

1}
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INPUT - EFN SOURCE STATEMENT - IFN(S) -

+1D(10)
+ NEH(20}

v DTEM{2) , NF{10)
s CVCOND(4,5)

DNA(12)
CVEMS({4,10)

DIMENSION DNE(12) ,
DIMENSION CVABS(4,10)

1 NAH(20) s NET(20) , NAT{(20) , NE{20,10) , NA(20,10) ,
2 TT(20) , TH(20) , ABSR(10) , ES{10) , ARES(10) , TS(10),
3 D(10)

DIMENSION TBEMS1{4) , TBEMS2(4) , TBEMS3(4) , TBEMS4(4)

1 TBEMS5(4) » TBEMS6(4) o TBEMS7(4) , TBEMS8(4)
2 TBEMS9{4) » TBEMSL(4) » TBABS1(4) ,» TBABS2(4) »
3 TBABS3(4) , TBABS4(4) , TBABS5{({4) , TBABS6{4) ,
4 TBABS7(4) , TBABS8(4) 4 TBABS9(4) , TBABSL(4) ,
5 TBCONL{(4) » TBCON2(4) , TBCON3(4) » TBCCN4(4)
6 TBCONS(4)

DIMENSION NE1B{(20) , NEL1T(20) , NE2B(20) » NE2T(20) , NE3B(20) ,
1 NE3T{20) o NE4B(20) , NE4T(20) » NE5S5B{(20)} , NES5T(20) ,
2 NA1B(20) , NA1lT(20) , NA2B(20) , NA2T{20} , NA3B(20) ,
3 NA3T{20) , NA4B(20) , NA4T(20) » NASB(20) , NAST(20} ,
4 RS(5) 4 STHICK(5) 5, NCONDI(5)

NAMELIST / INPUTL /

1 ABSR ¢+ ARES s+ D +r ES » ICONDR
2 ITMAX » IVCOND s NAH + NAT v NAlB v

3 NA28B + NA3B + NA4B + NASB + NALT *
4 NA2T s  NA3T + NA4T » NAST » NCALCR ,
5 NEH v+ NET + NELB + NEZB » NE38 *
6 NE4B + NE5B s NELT » NE2Z2T + NE3T ’
1 NE4T + NEST » NCOND » NCASE » NELIPS ,
8 NRADS r NRNGS » NSHLDS , NVUFH ¢+ NVUFT v
9 PHI + RH + RS + RSH v RST ’
A RT s SIGMA + SOLABS 4 SOLAR + STHICK ,
B TBABS1 , TBABS2 , TBABS2 , TBABS3 , TBABS4
c rBasss , TBABSé , TBABST , TBABS8 , TBABS9 ,
D TBABSL , TBCONL , TBCON2 , TBCON3 , TBCON4
E TBCONS , TBEMS1 o, TBEMS2 , TBEMS3 , TBEMS4
F TBEMSS , TBEMS6 , TBEMS7T , TBEMS8 , TBEMS9 ,
G TBEMSL , TH y TOL s TS v 17 ’

NAMELIST/0UTPUL/

1 ICONDR o ITMAX y IVCOND , NCALCR 4 NCASE ’
2 NELIPS , NRADS » NRNGS » NSHLDS s NVUFH '
3 NVUFT v+ PHI y RH + RSH + RST
4 RT s+ SIGMA » SOLABS , SOLAR s TOL

NAMELIST / INPUTZ2 / AHS 4 ATS 4 F 4 FL o FN o LIST 5 MXS 4 NR1
2 RMHD , RMTD , XLOR

NAMELIST / QUTPUZ2 /7 FL 4 FN 4 LIST 4 MXS » NR1 4 RMHD , RMTD ,XLOR

OO0 OOOONO00

W
[N

LIST OF INPUT FOR SHADOW SHIELD PROGRAM

VARIABLES READ IN THROUGH THE USE OF THE NAMELIST NAME INPUTL

NAME DESIGNATION QUANTITY CODES
ABSR ABSORPTIVITY OF THE SURROUNDINGS. NSHLDS+1 A
UNLESS INPUT THESE VARIABLES HAVE
A VALUE OF 1.0
ARES AREA OF THE SURROUNDINGS. UNLESS NSHLDS+1 A
INPUT THESE VARIABLES HAVE A VALUE
OF 1.0
V) DISTANCE BETWEEN SURFACES. NSHLDS+1 A
ES EMISSIVITY OF THE SURROUNDINGS. NSHLDS+1 A
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INPUT - EFN SOURCE STATEMENT -

ICCNER

ITMAX

IVCOND

NAH

NAT

NAlB

NALT

NA2B
NA3B
NA4B
NAS5SD
NA2T
NA3T
NA4T
NASY
NCALCR

NCASE

NCCND
NEH
NET

NELIPS

UNLESS INPUT THESE VARIABLES HAVE
A VALUE OF 1.0

INDICATES THE TYPE OF SHIELDS USED.
0 WHEN THE SHIELDS ARE PARTIALLY
CONDUCTING. 1 WHEN THE SHIELDS ARE
NON-CONCUCTING. 2 WHEN THE SHIELDS
HAVE A UNIFORM TEMPERATURE. ICONDR
IS INITIALLY ASSIGNED A VALUE OF 1.
THIS VARTABLE HAS SIGNIFICANCE ONLY
IF NRNGS 1S GREATER THAN 1, AND
CANNGY BE ZERO WHEN NRNGS IS 1.
THE MAXIMUM NUMBER OF ITERATIONS
BEFORE THE SOLUTION OF THE

IS ABANCONED. UNLESS SPECIFIED
THIS VARIABLE IS ASSIGNED THE
VALUE 200

1 WHEN THE SOLUTION FOR PARTIALLY
CONDUCT ING SHIELDS IS STARTED

FRCOM A NON CONDUCTING SOLUTION.

2 IF THE STARTING POINT IS FROM
THE UNIFORM TEMPERATURE SOLUTION.
KEY USEC TO SPECIFY ABSORPTIVITY
UF ELEMENTS OF HEATER.

THE EQUIVALENT OF NAH EXCEPT FOR
THE TANK.

KEY USEC TO SPECIFY ABSORPTIVITY
0f ELEMENTS ON SIDE OF SHIELD
CLOSEST TO HEATER FACING THE
HEATER.

THE EQUIVALENT OF NAIB EXCEPT

FOR SIDE FACING AWAY FROM HEATER.
THE EQUIVALENT OF NAIB GR NAIT
EXCEPT THAT THESE VARIABLES

REFER TO THE SECOND THROUGH THE
FIFTH SFIELDS RESPECTIVELY.

0 WHEN THE SOLUTION IS FOUND WITH
THE EQUATIONS LINEAR IN T*%4,

1 WHEN THE EQUATIONS ARE LINEAR IN
L IF THE LAST CASE IS TO BE RERUN
WITH THE TOLERANCE ON THE
TEMPCRATURE DISTRIBUTION HALVED.
A VALUE OF 1 IS ASSIGNED FOR THE
FIRST CASE AND UNLESS A VALUE IS
INPUT A VALUE OF 2 IS ASSIGNED
EACH SUCECEDING CASE.

KEY DENOTING THE THERMAL CONDUC-
TIVITY OF EACH OF THE SHIELDS.
KEY USED TO SPECIFY EMISSIVITY OF
ELEMENTS 0OF HEATER.

THE EQUIVALENT OF NEH EXCEPT FOR
THE TANK,

THIS VARIABLE HAS MEANING ONLY IF

T.

TFNL{S)

NRNGS
NRNGS

NRNGS

NRNGS

NRNGS

NSHLDS
NRNGS
NRNGS

1

BsC

B8.C

ByC

BsC

c
ByC

BsC
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INPUT - EFN SOURCE STATEMENT -~

NELB

NELT
NEZ2B
NE3B
NE4B
NESB
NE2T
NE3T
NE4T

NEST
NRACS

NRNGS

NSHLCS

NVUF F

NVUFT

PHI
RH

RS
RSH

RST
RT

SIGMA

VIEW FACTOR DATA FOR A NONPLANAR
HEATER OR TANK IS READ IN FOR A CASE
OTHER THAN THE FIRST CASE IN A RUN.
SET EQUAL TO O FOR EACH CASE IN WHICH
VIEW FACTOR DATA ARE READ IN. CARE
SHOULD BE TAKEN IF VIEW FACTOR DATA
ARE REALC IN MORE THAN ONCEs SINCE
SUCEEDING DATA OVERWRITE PRECEEDING
DATA.

KEY USED TU SPECIFY FMISSIVITY OF
ELEMENTS ON SIDE OF SHIELD CLOSEST
TO HEATER FACING THC HEATER.

THE EQUIVALENT OF NEIB EXCEPT FOR
SIDE FACING AWAY FROM HEATER.

THE EQUIVALENT OF NEIB OR NEIT
EXCEPT THAT THESE VARIABLES REFER

TO THE SECOND THROUGH THE FIFTH
SHIELD RESPECTIVELY.

1 WHEN EQUAL AREA ANNULI ARE CHOSEN
FOR EACH SURFACE. O WHEN EQUAL

RADII ANNULTI ARE CHUSEN FOR EACH
SURFACE. UNLESS A VALUE IS

SPECIFICD A VALUE OF 1 IS ASSIGNED.
THIS VARIABLE IS IGNUORED FOR SURFACES
OPPOSITE WON PLANAR SOURCES.

THE NUMBER OF ANNULI ON EACH SURFACE.
NRNGS NCRMALLY CANNOT EXCEED 20, BUT
IT CANNOT EXCEED 10 IF NON PLANAR
SURFACES ARE INVOLVED.

THE NUMBER OF SHIELDS. THERE MAY BE
UP TO 5 SHIELDS IN THE SYSTEM.

1 WHEN THE HEATER SURFACE IS NON
PLANAR. OTHERWISE 0. A VALUE OF

0 IS ASSIGNED INITIALLY.

THE EQUIVALENT OF NVUFH EXCEPT

FOR THE TANK SURFACE.

SOLAR FLUX PER UNIT TIME AND AREA.
THE RADIUS OF THE HEATER IN THE
LATERAL DIRECTION.

THE RADIUS OF THE SHIELDS.

THE RATIO OF THE RADIUS IN THE AXIAL
DIRECTICN TO THE RADIUS IN THE

IFN(S) -~

NRNGS BsC
NRNGS BsC
NRNGS B+C
1

1

1

1

1

1

NSHLDS

1

LATERAL DIRECTION FOR A NONPLANAR HEATER.

NEED NOT BE SPECIFIED IF THE HEATER
IS PLANAR ( NYUFH=0 ).

THE EQUIVALENT OF RSH EXCEPT

FOR THE TANK.

THE RADIUS OF THE TANK IN THE
LATERAL DIRECTION.

STEFAN-BOLTZMAN CONSTANT. THE UNITS
OF THIS CONSTANT DETERMINE THE
UNITS OF ALL OTHER DIMENSIONED

1
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INPUT - EFN SOURCE STATEMENT - IFN(S} -

VARIABLES. UNLESS SPECIFIED
SIGMA IS IN ENGLISH UNITS AND HAS
THE VALUE 1.713E~-09 BTU/HR/FT*¥2/R*%4
SOLABS SOLAR ABSORPTIVITY 1
SOLAR 0.0 WHEN NEITHER SOURCE REPRESENTS
SOLAR RADIATION. 1.0 IF ONE SQOURCE
IS SOLAR RADIATION. INITALLY ASSIGNED
A VALUE OF 0.0
STHICK THE THICKNESS OF EACH SHIELD NSHELDS
TBABS1 THE CONSTANTS FOR THE POLYNOMIAL 1-4 D
GIVING ABSORPTIVITY AS A FUNCTION
OF TEMPERATURE. THIS SET OF ONE
TO FOUR CONSTANTS IS USED WHEN AN
ABSORPTIVITY KEY IS DESIGNATED AS 1

TBABS2 THE CONSTANTS FOR THE ABSORPTIVITY 1-4 D
THROUGH POLYNOMIAL WHEN THE KEYS ARE EACH

TBABSL DESIGNATED AS 2 THROUGH 10

TBCON1 THE CONSTANTS FOR THE POLYNOMIAL 1-4 D

THROUGH GIVING THE THERMAL CONDUCTIVITY AS A EACH
TBCONS FUNCTION OF TEMPERATURE. EACH SET

OF FROM 1 TO 4 CONSTANTS IS USED

DEPENDING ON THE VALUE OF NCOND

FOR THE SHIELD.

TBEMS1 THE EQUIVALENT OF TBABS1 THROUGH 1-4 D
THROUGH TBABSL EXCEPT THAT THESE CURVES EACH

TBEMSL ARE FOR EMISSIVITIES.

TOL THE MAXIMUM ALLOWABLE DIFFERENCE

BETWEEN EACH TRIAL AND CALCULATED
TEMPERATURE OF THE SHIELDS AT THE
TIME OF CONVERGENCE. ASSIGNED A
VALUE OF 0.01

TH THE TCEMPERATURE FOR EACH ANNULUS NRNGS B
OF THE +EATER.

TT THE TEMPERATURE FOR EACH ANNULUS NRNGS B
OF THE TANK.

TS THE TEMPERATURES FOR EACH OF THE NSHLDS+1 A

SURROUNDINGS. UNLESS SPECIFIED
THESE VARIABLES ARE ASSIGNED A
VALUE OF O.

VARIABLES READ IN THROUGH THE USE OF NAMELIST NAME INPUTZ2

NAME DESIGNATION QUANTITY CODE

AHS THE AREA OF EACH ANNULUS ON THE NR1 E
HEATER OR THE SURFACE OPPOSITE THE TANK.

ATS THE AREA OF EACH ANNULUS ON THE TANK NR1 E
OR SURFACE OPPOSITE THE HEATER.

LIST 1 IF ALL THE DATA FOR NONPLANAR 1

SOURCES ARE TO BE LISTED. O IF THIS
DATA ARE NOT LISTED. INITIALLY
ASSIGNEC A VALUE OF O
MX1 DESIGNATION FOR TYPE OF SURFACES 1 E
INVOLVEC. 1 IF A NONPLANAR HEATER
SEES A PLANAR TANK OR SHIELD.
2 IF A NONPLANAR TANK SEES A PLANAR

37
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NR1

FN

FL

RMHD

RMTD

XLOR

COCE

INPUT -~ EFN SOURCE STATEMENT - IFN{S) -

SHIELD CR HEATER. 3 IF A NONPLANAR
TANK SEES A NONPLANAR HEATER.
THE NUMBER OF ANNULI ON EACH SURFACE. 1

VIEW FACTORS FROM ANNULI ON THE NR1 %%2 E.F
TANK TO ANNULI ON THE HEATER.
THE SET OF DATA FOR A GIVEN CONFIG- 1 G

URATION WHICH IS STORED ON TAPE 1

CAN BE FOR SEVERAL DIFFERENT NUMBERS

OF ANNULT. AT THE END OF EACH SET OF
DATA FN IS SET EQUAL TO 1

SET EQUAL TO 1 AT THE END OF THE 1
LAST SET OF DATA. THERE IS A MAXIMUM

OF 30 SETS OF DATA. IF IT IS DESIRED

TO READ IN ADDITIONAL DATA FOR NONPLANAR
SOURCES, FL IS SET EQUAL TO 1.0 JLST
PRIOR TO EACH RETURN TO TBVUF.

THE RATIO OF THE RADIUS IN THE AXIAL 1 EyH
DIRECTICN TO THE RADIUS IN THE LATERAL
DIRECTIUN FOR THE NONPLANAR HEATER.

THE EQUIVALENT OF RMHD EXCEPT FOR 1 E+H
THE TANK.

THE SPACING RATIO (L/R) BETWEEN THE 1

NONPLANAR SURFACE AND THE SURFACE NEXT

T0 IT.

EXPLAINATION OF CODES

WHEN THERE IS SOLAR RADIATION PRESENT ONLY NSHLDS VALUES OF
THESE VARTABLES NEED BE READ IN. HOWEVER, SINCE THE
NUMBERING BEGINS WITH THE HEATER, THE VALUE STORED IN THE
SECOND LOCATION REPRESENTS THE PROPERTY BETWEEN THE FIRST
AND SECOND SHIELDS.
IF THE VALUES FOR THESE VARIABLES ARE THE SAME ACROSS A
SURFACE, TFEN DENOTING THE SECOND VALUE AS ZERO CAUSES
THE PROGRAM TO ASSIGN THE FIRST VALUE TO ALL OF THE VALUES
FOR THE VARIABLE
KEYS RELATE THE PROPERTIES OF AN ELEMENT OR SHIELD TO THE
CONSTANTS GIVING THAT PRUPERTY. THUS THE ENTRY NET{3)=4
INCICATES THAT THE EMISSIVITY OF THE THIRD ANNULUS OF THE
TANK IS DETERMINED BY THE VALUES IN TBEMS4. IF ALL OF THE
ANNULI ON A SURFACE HAVE THE SAME KEY FOR A VARIABLE,
ASSIGNING A VALUE OF O TO THE SECOND ANNULUS CAUSES THE
PROGRAM TO ASSIGN THE VALUE FOR THE FIRST ANNULUS TO ALL OF
ANNULT ON THE SURFACE.
THE POLYNOMIALS ARE IN ASCENDING ORDER SO THAT THE FIRST
COEFFICIENT IS A CONSTANT WHILE THE FOURTH CCEFFICIENT IS
MULTIPLIED BY THE TEMPERATURE CUBED.
THE VIEW FACTOR DATA CONSISTS OF BETWEEN 1 AND 30 SETS OF
DATA. EACH SET IS FOR A DIFFERENT SPACING RATIO OR SHAPE
OF THE NONPLANAR HEATER OF TANK. WITHIN A SET OF DATA
INFORMATICN CAN BE PROVIDED FOR DIFFERING NUMBERS OF ANNULI
FOR EACH SET OF DATA THERE IS A SUBSET FOR EACH NUMBER OF
ANNULI. EACH SUBSET CONTAINS THE AREAS OF EACH ANNULUS ON
THE NONPLANAR SURFACE AND THE SURFACE ADJACENT TO IT, AS
WELL AS THE VIEW FACTORS BETWEEN ANNULI.
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10

12

13

i4s

15

18

19
17

INPUT - EFN SOURCE STATEMENY - IFNI(S) -

F THE VIEW FACTORS ARE READ IN THROUGH A ONE PRIMENSIONAL
VECTOR(F). THE VIEW FACTURS ARE STORED SERIALLY. THE VIEW
FACTORS ARE FROM THE TANK SIDE TO THE HEATER SIDE. THUS
FOR MX1=3 THE VALUES OF F ARE VIEW FACTORS FROM ANNULI ON
THE TANK TO ANNULI ON THE HEATER. THE FIRST VIEW FACTOR IS
FROM THE INNERMOST ANNULUS ON THE TANK TO THE INNERMOST
ANNULUS ON THE HEATER. THE SECOND VIEW FACTCR IS FROM THE
INNERMOST ANNULUS ON THE TANK TO THE SECOND ANNLUUS ON THE
HEATER.

G ALL OF THE DATA FOR A CONFIGURATION SHOULD BE READ IN AS
A BLOCK OF DATA. EACH BLOCK CAN CONTAIN DATA FOR SEVERAL
DIFFERENT NUMBER OF ANNULI. THUS THE VIEW FACTORS ARE
STORED IN A TRIPLY SUBSCRIPTED ARRAY WITH THE THIRD INDEX
GIVING THE NUMBER OF ANNULI ON EACH SURFACE.

H THESE VARIABLES ARE READ IN SO AS TO DISTINGUISH DIFFERENT
TYPES OF SURFACES. FOR A HEMISPHERE THEY WOULD HAVE A VALUE
OF 1.0y AND FOR AN OBLATE SPHERCID THEY WOULD BE LESS THAN
1.0

GO TGO (1+2)sJR

READ IN ALL DATA OTHER THAN THAT FOR THE VIEW FACTORS BETWEEN
NONPLANAR SURFACES.

READ(5,4 INPUTL)

WRITE(6,10)

FORMAT (42X, LBHLISTING OF INPUT )
WRITE(6,0UTPUL)

DO L1 I=1,10

SUM1=0.0

SUM2=0.0

DO 12 J=1,4

SUM1= SUML1 + CVARS(J,1)

SUM2=5UM2 + CVEMSL{J,1)

CONTINUE

IF ( SUM1l .EQ. 0.0 ) GO TO 14
WRITE(64+13) ID(I) 4 (CVABS{Jysl)4Jd=1,4)
FORMAT(3Xs5HTBABSyAly4E1244)

IF { SUM2 .EQ. 0.0 ) GO TO 11
WRITE(6,15) IDII) 4 (CVEMS({JsI),yJd=1,4)
FORMAT(1H+,66Xy5SHTBEMS,ALl,4E12.4)
CONTINUE

IF( ICONDR .NE. C .OR. NSHLDS .EQ. O ) GO TO 16
DO 17 I=1,45

SUMi=0.0

DO 18 J=1,y4

SUM1=SUM1 + CVCOND(J,I)

CONTINUE

IF ( SUML .EQ. 0.0 ) GO TO 17
WRITE(64+19) ID(I) 5, ( CVCOND(Ja1),J=144)
FORMAT(3X,5HTBCONyAl44E12.4)

CONTINUE

WRITE(643) ( STHICK(I)yI=14NSHLOS)
FORMAT(18H SHIELC THICKNESS= ,5E12.4)
WRITE(696) ( NCOND{(I)yI=14NSHLDS)
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le6
4

INPUT -~ EFN

FORMAT( 19H CONDUCTIVITY KEYS=,515)

WRITE(694) ( RS{I),I=1,NSHLDS)

FORMAT(16H SHIELC RADIUS =,5E12.4)

NX=NSHLDS+1

NS=1

IF ( SOLAR .NE. 0.0 ) NS=2

IF { NS .GT. NX ) GO TO 21

WRITE(6422) ( T 4 D(I) 4 ARES(I) , ABSR(I} ,
I=NS,NX)

SOURCE STATEMENT -~

v TS(I)

22 FORMAT(//36X944HPROPERTIES OF SURROUNDINGS BETWEEN SURFACES /76H

21

31
32
33
34
35

36
23

24

25
27

26
28

60

1 SPACING DISTANCE AREA
2ERATURE

/(1643F13.3,F15.3,F13.3))
DO 23 K=1,46
NF (K)=NRNGS

IF { K «LE. 3 .AND. SOLAR .NE. 0.0 ) GO 70O 23

GO TG ( 31+32+33,34435,36)4K
IF ( NEH(2) .EQ. O ) NF(1)=1

GO TO 23

IF ( NAH({2) .EQ. 0 ) NF(2)=1
GO TG 23

IF ( TH{2) .EQ. C.0 ) NF(3)=1
GO TC 23

IF ( NET(2) .EQ. O ) NF(4)=1
GO TC 23

IF ( NAT(2) .EQ. O ) NF(5)=1
GO TC 23

IF ( TY(2) .EQ. 0.0 ) NFl6)=1
CONTINUE

IF ( SULAR .NE. C.0 ) GO TO 27
NI=NF(1)

WRITE(6+24) DNE(L) 4 ( NEH(I)s1=14N1)
N1=NF{2)

FORMAT(12X,A6,2013)

WRITE(6,24) DNA(L1l) , ( NAH{(I)s1I=1,N1)
NI=NF(3)

WRITE(6,25) DYEM({L) 4 ( TH{I)sI=1,N1)
FORMAT ( 12X4sA6,10F11.3/18X,10F11.73)
NX=NSHLDS*2

IF { NX .EQ. O )} GO TO 28

DO 26 N=1,NX

N1=NRNGS

IF ( NE(24N) «EQ. 0O ) Nl1=1

WRITE(6924) DNE(N+1) 5 (NE{I,N},I=1,N1)
N1=NRNGS

IF ( NA(24N) EQ. 0O ) Nl1=1

WRITE(6924) DNA(N+1) , ( NA(I,N) 4, I=1,N1)
CONTINUE

NL=NF(4&)

WRITE(64+24) DNE(12) o { NET({I),I=1,N1)
N1=NF(5)

WRITE(6424) DNA(12) 4 { NAT{I1),I=1,N1)
N1=NF(6)

WRITE(6,25) DTEM(Z2) o { TT(I)yI=1,N1)
RETURN

READ IN VIEW FACTORS AND AREAS FOR NONPLANAR SURFACES

ABSORPTIVITY

EMISSIVITY TEMP



50

53

51

INPUT - EFN SOURCE STATEMENT -

READ{5, INPUTZ2)

IF { LIST .EQ. O ) RETURN

WRITE(6+5)

FORMAT(1HL +42X+3CHLISTING OF VIEW FACTOR DATA
WRITE(6,0UTPU2)

WRITE(6450) DAHS 5 ( AHS(J),J=1,NR1)
FORMAT(6XyA6510FL1.4)

WRITE(6,50) DATS » ( ATS(J)sJ=1,NR1)
WRITE(6453)

FORMAT(12X,30H VIEW FACTORS BETWEEN ANNULI
NR2=NR1%*%*2

WRITE{(6451) { F(N)},N=1yNR2)
FORMAT{10E12.4)

RETURN

ENDC

IFN(S)

)
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DECK
DIMENSION ES{10) , ABSRI(10
EQUIVALENCE
1 (CVCOND,CVK) o (CVEMS
DIMENSION RS(9) 4 STHICK(7
1 TH{2C) , TT(20
2 CVEMS(4,10)
3 CVX{40) 4, CVY(
DIMENSION NEL{(Z20C) 5 NALlL(2
EQUIVALENCE ( NE1 o NE )
COMMCON / BULL/ EMS(2049,2)
COMMCN/NEW/ FSSHTT(6) 4 FS
FNNHTT(20,20,6
FNSHTT(2046)
FNHTSR{20,6) 4 FN
FSRTNT(2046) ,
/ EAS / AT 4, AH 4, Q
/CONDT/ COND(20,10)
COMMUON / KSLV / T0(20,10)
COMMON /T3/ 0QO0A2 4 QSUR
DIMENSICON RORS(2C)
COVMMCN C(1000)
EQUIVALENCE
1(C(1) ¢ ABSR )
2(C{31) LES )
3(C{43) ,ITMAX )
)
)

SWN -

COMMON
COMMON

y (CU11)
v (Cl41)
s (C(51)
4{C(91) 4NA v (C(291),
S(C(331),4NE + (C(531),
6(C(542)4yNELIPS) 4, (C(543),
T(C(545) 4 NSHLDS) 4 (C(546),
8(C(548)4NVUFT ) 4 (C(549),
9(C(551)4RS |
A{C(563)yRH }
B(C(566)4,SIGMA )
C(C(571),S0LABS) ,
D(C(641),CVCOND) ,
E(C{741) 4TS ) 9 (C(T751),
COMMON / ELIP2 /7 FN 4, FL
1 AHS(10)

LOGICAL PASS

(C(561),
(C(564),
(CL567),
(C{591),
(C(681),

INITIALIZE DATA AND GIVE INPUT VARTABLES THEIR ASSIGNED VALUES

DO 510 1=1,200
NEL(I)=0
NAl(I)=
IF (I
cvxer)
cvy(I)
IfF (1

G 40 ) 60 TO 510

i ne

T.
0.0
0.0
- G4 TO 510

-G 20 )

)} » REFS(10) , TS(10)

(CVABS 4, CVY)
D{(8) ,

+ CVX)
) » NCOND(T) ,
) » CVCOND(4,10)
NEH(20) 4 NET(20)
40) 4 CVK(20)
00)

{ NA1 , NA )

v AB(20,952) »
STTH{6) 3 FSNHTT{20,6)
) » FNNTTH(20,2096)

FNSTTH(20496) 4 R{20,7)
TTSR(2046)

FSRSR(6)

OA 4 T(20,10)

» RES(20,10)

s LOOK , LCOND
QOAS

F13 ,

+ ICOND

{(C(21)
(Cta2)
(C(71) oNAT
(C{311),NET
(C(541)4NCASE
(C(544) 4NRNGS
(C{547)4NVUFH
(C(550),P1
(C{562)4RST
(C(565),SOLAR
{C(568),WI
(C{601),CVABS
(C({721),TH
{C{771)4REFS
XLCR

ARES ) *D
IVCOND)
NAH )
NEH )
NCOND )
NRADS )
NCALCR)
PHI )
RSH )
RT )
TOL )
STHICK)
CVEMS )
T } oy
RMHD 4 RHID
F(10410)y LIST

L IR IR B B 2K TR S R ey

?

’

?

FSRTNH(20,6)

Fl4a

)

» ICONDR)

)
}
)
)
}
)
)
}

)
)
)

)
MXS

NAH{20)
NE(20,10)

1

REF{2049,2)

» ARES(10)

CVABS(4,10) ,

+ NAT(20)
NA(20,10)

FSNTTH(20,6)

AREA(20,7)

AREATH{T)

)

?

NCALC

L B B IR I R R e R L S Y

F23

ATS(10)

’

F24

TMAX

]

v

’



c
C
c

510

1000
100

106

107

SHIELD - EFN

« 10 ) GO TO 510

NELIPS=0

LIST=0

ITMAX=200
NCALCR=1

PI = 3.14159
SIGMA= 0.1713E-08
WRITE (6,100}
FORMAT (1H1)

READ INPUT DATA

CALL INPUT (1)

IF ( NELIPS .EQ. O .AND. ( NVUFT
CALL TBVUF(O)

WRITE(64107)

FORMAT (42X, 18HLISTING OF OUTPUT

NELIPS=1

TOLX = TOL

IF( ICUNDR .NE. C ) ICOND=ICONDR

IF ( IVCOND .EQ. O ) IVCOND=1

IF ( ICONDR .EQ. O ) ICOND=IVCOUND

NCALC=NCALCR

ICASE=0

SDT=1.0E10

ITCOND=1

W=1.0

LW=0

LOCK=1

WX=WI

TEMPH=TH(1)

TEMPT=TTI(1)

IF (NI.EQ.O) WRITE (6,100}

«NE

0

SOURCE STATEMENT -—

‘DR.

IFN(S) -

NVUFH

«NE.

0)

)

63
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OO0

64

506

520
511

512

514
515

516

518
519
531
532
533
534
535
536
537
538
521

502
501

540

SHIELD

NI =1

DO 501 L=1,2

EFN

SOURCE STATEMENT

IFN(S)

STORE DATA FOR EMISSIVITY KEYS AND TEMPERATURES

DO 501 M=1,5

JJI=2%M +L-2

DO 501 K=1,8

IF ¢ JJ

IF { K-7
GO TO (

NS=TH(2)
GO 10 519
NS=TT(2)

GO TC 519
NS=NET(2)
GO TO 19
NS=NEH({2)
GO TU 519
NS=NAT(2)
GO TG 519
NS=NAH(2)
GO TC 519

NS=NE(2,JJ)

GO TG 519

NS=NA(2,JJ)
DO 521 N=2,20
«NE.
531
THIN)}=TH(1)

IF ( NS
GO T0 ¢

GO T0 521

TTIN)=TT(1)

GO TC 521

)

511

oEQ.

1)

502

A

1]

NETIN)=NET(1)

GO0 TG 521

NEH(N)=NEH(1)

GO TO 521

NAT(N)=NAT(1)

GO TO 521

NAR{N)=NAH(1)

GO TG 521

512

0 )
532

NE(N,JJ)=NE(1,JI)

GO TO 521

NA(N,JJ)I=NA{1,dJ)

CONTINUE
CONTINUE
CONT INUE

DO 540 N=1,NRNGS
T(N,1)=TH(N)
TNy NSHLCS+2)=TT(N)

CONTINUE

GO TO 520
517 » 518
v 513 ,

GO TO 502
s 533 ,

514

534

’

515

535

516

536

?

517

537

DETERMINE SURFACE PROPERTIES OF HEATER AND TANK

DO 503 N=1,NRNGS

J=NEH(N)

k4

1 ]

518 )

538

)

K

K



o0

aoon

AOM

OO0

503

541

601
600

400

15

20

SHIELD - EFN SOURCE STATEMENT - IFN(S) -

EMS(Ns1,2) = CVEMS(1,J) + ([ CVEMS(2,J) + THIN}* ( CVEMS(3,J) +

1 CVEMS(4,J)%THIN)} ))*TH(N)

J=NAH{N)}

AB(Nyly2)= CVABS(1lyJ) + [ CVABS(24J) + TH(N)*( CVABS{3,J) +

1 CVABS {4 J)*THIN) ) 1%TH{N)

REF(NyLy2) = 1.0 —AB(Ny1,2)}

J=NET (N}

EMS(N,NSHLDS+2,1) = CVEMS{1,J) + ( CVEMS(2,J) + TTINI®*( CVEMSI(3,J)
1 + CVEMS(4,J)%TT(N) ) I1*TT(N)

J=NAT(N)

AB(NyNSHLDS+2,1)= CVABS(1,J) + ( CVABS{(24J) + TT(N)*( CVABS(3,J)+
1 CVABS(4,J)*TT(N} ) )*TT(N)
REF(NyNSHLDS+2,1)=1.0-AB(NyNSHLDS+2,1)

CONT INUE

DO 541 M=1,10
REFS{M)=1.0-ABSR (M)
CONTINUE

CALCULATE VIEW FACTURS BETWEEN PAIRS OF SURFACES

CALL VUFACIL
IF ( NSHLDS .EQ. 0 ) GO TO 1O
IF ( ICONDR .NE. O ) GO 70O 400

CALCULATE THERMAL RESISTANCE BETWEEN ANNULI

NF = NRNGS - 1

DO 600 M = 14NSHLDS

RESK=SIGMA/STHICK(M)/2.0/P1

DO 601 N = 1,NF

IF(N<EQsl) RES(NyM)=RESK¥ALOG((R(ZyM+1)}4+R{LyM+1))/R{1,M+1))
IFINGT.1) RES{N,M)=RESK*ALOG{ (R{N+L,M+1)+R(N,M+1))/
1 (R{NsM+1)+R(N-1,M+1)}))
CONTINUE

CONTINUE

MAKE INITIAL ESTIMATES OF TEMPERATURE OISTRIBUTIONS

IF { ICASE .GT. C ) GO TO 20

IF { SULAR .EQ. 0.0) TEMPX = TEMPH

IF { SGLAR JNE. C.0) TEMPX = 500.0

T(Ly2) = TEMPX —(TEMPX~-TEMPT)/FLOAT(NSHLDS+1)
IF ( NSHLDS .EQ. 1 ) GO TO 20

NSF=NSHLDS+1

DO 15 M=3,NSF

T(L,M) = T(1,M-1) - (TEMPX -Tl1,2))

CONT INUE

CALCULATE SURFACE PROPERTIES AND THERMAL CCNDUCTIVITIES FOR
SHIELDS

DO 21 M = 14NSHLES
JK = NCOAND(M)
K=M+1

DO 21 L = 1+2

Jd = 2%M + L - 2

65
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66

17

1

1

1

SHIELD - EFN SOURCE STATEMENT - IFN(S) -

DO 21 N=1,20

IF ( LOOK .NE. 1 .AND. ICASE .NE. O )} GO TO 17

TIN,K)=T(1,K)

TO(N,K)=TEN,K)

IF ( N .GT. NRNGS ) GO TO 21

J=NE (N, JJ)

EMSINgKyL)=CVEMS (13 J)+CVEMS(243)%TIN,K)+CVEMSI3 43 J)%T(NyK)%%2
+CVEMS (449 J)RT{NyK) k%3

J = NA(N,JJ)

AB(NyKyL) =CVABS{LyJ)+CVABS(24J).T(NyKI+CVABS(3,3J)%T(NyK)**2
+CVABS {4, J)%T{NyK)%%3

REF(NyKyL) = 1.0 — AB{N,K,sL)

IFIN.EQ.NRNGS.OR.ICOND.NE.O) GO TO 21

TMS= ( T{N,K) + T(N+1,K) )/2.0

COND{NyM) = CVCOND(1,JK)+CVCOND(2yJK)*TMS+CVCOND (3, JK)*¥TMS**2+

CVCOND(4,JK ) xTMS%%3

21 CONTINUE

210

13

TMAX=0.0
CALCULATE SHIELD TEMPERATURES

CALL SHCLC

IF ( TMAX .NE. 0.0 )} GD TO 7

DO 210 M = 1,NSHLDS

K=M+1

DO 210 N = 1,NRNGS

IF ( ICOND EQ. 2 )} TINyK) = T{1l,sK)
CONT INUE

TEST TO SEE IF TEMPERATURES HAVE CONVERGED

SDTX=0.0

PASS=.TRUE.

DO 6 M = 1,NSHLDS

K=M+1

NF = NRNGS

IF( ICOND .EQ. 2 ) NF =1

DO 6 N = 1,4NF

TEST = ABS(TO(N,K) = T(N,K) )
IF ( TEST .GT. TOLX ) PASS=.FALSE.
SDTX=SDTX+TEST

CONTINUE

IF { PASS .AND. .TRUE. } GO TO 9
ICASE=1

LOGCK=LOO0K+1

IF { LOOK .GT. ITMAX )} GO TO 14
IF ( ICOND .NE. € ) GO TO 8

IF ( SDTX .GT. SCT )} GO TO 13
SDT=SDTX

GO TC 8

SDT=1.0E10

LW=LwW+1

IF ( LW .EQ. 8 ) GO 70 7
ICONC=1CONDL

W=1.0

ICASE=C



aAOO o0

23
24
25

101
19

109

11

L2

14
18

9

26

10

SHIELD - EFN SOURCE STATEMENT - IFN(S)

GO TG 400
DO L M=1,NSHLDS
K=M+1

DO 2 N=1yNRNGS

IF ( ICOND .EQe 2 .AND. N .GT. 1 ) GO TO 2
TINsK)=TO(NyK} =Wx{TO(IN,K)-TI(N,K) )
TO(NGKI=T(NyK)

CONTINUE

CONT INUE

GO TC 20

GO TO ( 22423+424+25)+1TCOND
ICCNC=IVCOND

GO TG 11

ICCNC=3-IVCOND

GO TG 11

ICOND=3~-1VCOND

GO TGO 11

WRITE(64101) NCALC ,ICOND

FORMAT(28H CASE ABANDONED WITH NCALC=,13,6X,6HICOND=,13)

M=NSHLDS+1

WRITE(65109) ({ TO(NsK) yN=1,NRNGS) sK=2,M)

FORMAT(30H PREVIOUS TEMPERATURE VALUES /7110F12.3)

NCASE=2

ICASE=0

GO TO 10

ITCCNC=1TCOND+1

ICASE=0D

W=1.0

NCALC=1-NCALC

Lw=0

WRITE(6412) NCALC , ICOND

FORMAT(44H CASE DIVERGING, CHANGING NCALC AND ICOND
6HNCALC=,11,12X,6HICOND=,11)

GO TC 400

WRITE(6,18)

FORMAT{36H EXCESSIVE NUMBER OF ITERATIONS )

GO TG 19

IF { ICUOND .EQ. ICONDR ) GO TO 10

IF ( LW .EQ. O ) GO TO 26

W=WX/2.0

ICASE=1

ICCNLC=ICONDR

GO TO 20

ICONDL=TCOND

ICGND=ICGNDR

W=WI

ICASE=1

GO To 20

DETERMINE HEAT TRANSFER RATE FUOR TANK
CALL QDOT
WRITE QUTPUT

IF { NSHLDS .NE. O ) GO TO 105

}

y 12X,
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WRITE(6+108) SOLAR , QOA , QOA2 , QOAS
LISTING OF OQUTPUT VARIABLES

SOLAR SAME VARTABLE AS IN INPUT LIST

Q0A HEAT TRANSFER RATE PER UNIT AREA TC SOURCE DESIGNATED AS
THE TANK.

QOAZ HEAT TRANSFER RATE PER UNIT AREA TO SURFACE QOPPOSITE 7O
THE TANK.

QOAS HEAT TRANSFER RATE PER UNIT AREA TO THE SURROUNDINGS
BETWEEN THE TANK AND THE OPPOSITE SURFACE.

LOOK THE NUMBER OF ITERATIONS

TOLX THE MAXIMUM DIFFERENCE BETWEEN EACH ESTIMATED AND
CALCULATED TEMPERATURE FOR THE SHIELDS.

M THE SHIELD NUMBER.

T THE TEMPERATURE OF EACH ANNULUS OF EACH SHIELD.

R{N) THE RADIAL DISTANCE TU THE OUTER EDGE OF THE NTH ANNULUS.

RORS R(N) DIVIDED BY THE RADIUS OF THE SHIELD { RS ).

108 FORMAT(1H /12H SOLAR =4F3.1+6Xy6H QOA =4E12.446X,6HQ0AZ2 =,

1E12-416X,6HQOAS ='E1204)
110 FORMAT{1HL)

GO TC 106
105 WRITE(6,102) LOOK , SOLAR , QOA , TOLX
102 FORMAT(///17H NU- ITERATIONS =,1446X,8H SOLAR =,F3.0,10X,

1 TH QOAT =,E12.4,10X,6H TOLX=4F7.5)

WRITE(6,110) ’

DO 16 M=1,NSHLDS

K=M+1

DO 204 N =1,NRNGS

RORS(N) = R{N,M+1)/R{NRNGS,M+]1)
204 CONTINUE

WRITE(6,103) M , T{LsK} , R({1l,K) 4 RORS(1)
103 FORMAT(//48H M TEMP R{N) R(N) /RS

1 1643F12.3)

IF { NRNGS .EQ. 1 ) GO TO 16

WRITE(6,104) { T(NyK) 4 R(NyK) , RGRSIN) 5 N=2,NRNGS )
104 FORMAT(F18.3,2F12.3)
16 CONTINUE

IF(NCASE .NE. 1 ) GO TO 1000

NCASE = 2
TOLX = TOLX/2.0
ICASE = 1
LOCK=2
ITCOND=1
WRITE (6,100)
GO 70 20
STGP
ERROR MESSAGE NUMBER 1
ENC
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SUBRCUT INE TBVUF {

THIS ROUTINE REACS

DECK

JR)

OF NCNPLANAR SURFACES.

IN AND STORES DATA FOR VIEW FACTORS AND AREAS

A MAXIMUM OF 10 ANNULI CAN BE USED WHEN THERE ARE NCNPLANAR

SURFACES, AND THE
COMMON / ELIPT / M , XOR
COMMGN/NEW/ FSSHTT(6) ,

MX1
FSSTTH(6)

FSNHTT(20,6)

NUMBER OF ANNULI USED SHOULD CORRESPUND TO THE
NUVMBER OF ANNULT FOR WHICH DATA HAS BEEN STORED.

FSNTTH(20,6)

AREA(20,7)

1 FNNHTT(20,20,6) 9 FNNTTH(20,20456)

2 FNSHTT(2046) 4 FNSTTH(20,6) 4 R{20,7) ,
3 FNHTSR(20+46) 4y FNTTSR(2046) s FSRTNH(20,6)
4 FSRTNT(20,6) y FSRSR(6)

DIMENSION XT(30) , MX(30) , RMHS(30) , RMTS(30) , N
DIMENSION FT(1000) 5 FX(10,10,10)

DIMENSION ASTORE(10,10,2) ,» ASY(200)

EQUIVALENCE ( FT , FX )

EQUIVALENCE ( ASY , ASTORE )

LOGICAL PASS

COMMON C(1000)

EQUIVALENCE

i(Cc(1) ,ABSR '} , (C(1ll) LARES ) , (C(21) LD )
2(C(31) HES ) o (C(41) ,IVCOND) , (C(42) ,ICONDR)
3(C(43) ,ITMAX ) 4, (C(51) ,NAH ) o (C(T71) HNAT )
4(C(91) +NA ) » (C(291),NEH ) » (C(31L1),NET )
5(C(331)4NE ) » (C(531),NCOND ) » (C(541),NCASE )
6{C(542),NELIPS) 4, (C(543),NRADS ) 4 (C(544) 4NRNGS )}
T(C(545) yNSHLDS) 4 (C{546),NCALCR) 5 (C(547)4,NVUFH )
8(C(548) yNVUFT )} 4, (C(549),PHI ) » (C(550),P1 )
9({C(551),4RS ) » (C(561)4RSH } » (C{562),RST )
A(C{563),RH ) » (CU564)4RT ) » (C(565),SCOLAR )
B(C(566),SIGMA ) , (C(567),TOL } 9 (C(568),WI )
C(C(571),S0LABS) , (C(591),STHICK) 4 (C(601},CVABS )
D(C(641),CVCOND) o {(C(681),CVEMS ) 4, (C(T721),TH )
E(C(T741),T7S ) oy (CLT5L1),TT } » (C(T771),REFS )
COMMON / ELIP2 / FN 4 FL 4 RMHD , RMTD , XLOR 4 MXS
1 AHS(10) , F(100) , LIST , NR1

IF { JR .NE. O ) GO TO 10

REWIND 1

I=1

FN=0.0

FL=0.0

READ VIEW FACTOR DATA.

CALL INPUT (2)

CONVERT THE VIEW FACTORS WHICH ARE

STORED SERIALLY

AREAT(T7) ,

14

RG(10430)

% W W W% ¥ % ¢ W % Y W w9

v+ ATS(10) ,

[INTO THE PROPER
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C

c

C

C

c

C

C

c
21
23
22

C

c

C

C

C

c
10
13

C

C

c

15
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ARRAY FORM. THE FIRST VIEW FACTOR IS THE ONE BETWEEN THE INNERMOST
ANNULUS GON THE SURFACE CLOSER TO THE TANK TO THE INNERMOST ANNULUS
ON THE SURFACES CLOSER TO THE HEATER. THE NEXT VIEW FACTOR IS FROM
THE INNERMOST ANNULUS ON THE TANK SIDE TO THE SECOAND ANNULUS ON
THE HEATER SIDE. AFTER NRNGS VIEW FACTUORS HAVE BEEN READ IN, THE
VIEW FACTOR FROM THE SECOND ANNULUS ON THE TANK SICE TO THE
INNERMOST ANNULUS ON THE HEATER SIDE IS READ IN. THE PROCESS IS
REPEATED UNTIL ALL THE VIEW FACTORS BETWEEN A PAIR COF SURFACES ARE
DETERMINED.

NT=NR1*%2

DO 21 N=1,4NT

J= 1 + ( N-1)/NRL
K=N-(J-1)%NR1
FX{KyJsNR1)I=F(N)
CONTINUE

DO 23 N=14NR1
ASTORE(NsNRL,1)=AHS(N)
ASTORE(NsNRL,2)=ATSIN)
CONTINUE
NRG(NR1,I)=NR1

IF ( FN «.NE. 0.0 ) GO TO 22
GO T0 12

XT(I)=XLOR

MX(1)=MXS

RMHS (1) =RMHD
RMTS{I)=RMTD

STORE VIEW FACTURS AND AREAS ON TAPE.

WRITE(1) XLOR y MXS » ( FT{J),J=1,1000) » ( ASY(J),Jd=1,200)
IF ( FL .NE. 0.0 ) RETURN

I=1+1

GO TG 12

CHECK TO SEE IF SPACING AND SURFACES ARE IN TABLES

L=0

DO 13 K=1,I

PASS = .TRUE.

IF { ( MX1 .EQ. 1 .0OR. MX1l .EQ. 3 ) .AND.

1 ABS(RSH-RMHS(K) ) «GT. 0.05%RSH ) PASS=.FALSE.
IF ( { MX1 .EQ. 2 .OR. MX1l .EQ. 3 ) .AND.

1 ABSIRST-RMTS{K) ) .GT. 0.05%RST ) PASS=.FALSE.
IF ( ABS({XOR-XT{K)) .GT. 0.05%X0OR )} PASS=.FALSE.
TF ( NRNGS oNE. NRGI(NRNGSyK) )} PASS=.FALSE.

IF ( PASS .AND. TRUE. ) L=K

CONTINUE

IF ( L .EQ. O .OR. NRNGS .GT. 10 ) GO TO 14
REWIND 1

READ VIEW FACTORS FROM TAPE
DU 15 K=1yL

READ{L) XLOR 4 MXS » ( FT{J)»Jd=1,1C00) » ( ASY(J)yJ=1,200)
CONTINUE
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STORE VIEW FACTORS AND AREAS IN CORE

AREAT(M)=0.0

AREAT{M+1)=0.0

DO 17 N=1,NRNGS

DO 16 NN=1,NRNGS
FNNTTH(NN,NyM)=FX{NNyNsNRNGS)
CONTINUE

AREA(NyMI=ASTORE (N,NRNGS» 1)
AREA(NyM+1)=ASTORE(N,NRNGS,2)
AREAT(M)=AREAT{M) + AREA(N,M)
AREAT(M+1)= AREAT(M+1) + AREA(N,M+1)
CONTINUE

READJUST RADII OF PLANAR SURFACES TO AGREE WITH INPUT DATA

IF( NSHLDS .EQ. 0O ) GO TO 18

IF ( M JEQ. 1 ) RINy2)=SQRT(AREA(N,21/P1)

IF { MJ.EQ. NSHLDS+1 ) RIUNyM)=SQRT(AREA(N,M)/PI)
RETURN

WRITE(6,20)

FORMAT(42H NO SPACING ENTRY IN TADBLE
ASTOP=SQRT(~-2.0)

RETURN

END
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SUBRGUTINE VUFAC1

THIS ROUTINE DETERMINES VIEW FACTORS BETWEEN ANNULT AND BETWEN

WHCLE SURFACES.

DIMENSION ES{10) , ABSR(10) ,
COMMON / ELIPT / M , XOR » MX1
DIMENSION RS(10) » DI(11)

COMMON/NEW/ FSSHTT(6)
FNNHTT(20420,6) »
FNSHTT(2046) 4 FNS

FNHTSR(20,6) 5 FNTTSR
FSRTNT({2046) ¢ FSR

COMMCN / EAS /7 AT , AH 4, QDA ,

COMMCN C(1000)

EQUIVALENCE

1{C(l) 4ABSR )

2(C(31) LES )

3{C{43) 41ITMAX )

)
)

W N -

{C(11)
{C(al) ,IVCO
(C(51) ¢NAH
{C{291)4NEH
(C(531)+NCON
(C(543)4NRAD
(C(546 )4 NCAL
(C(549),PHI

{C({561)+RSH
(C(564)4RT

(C(56T7),T0L

{C({591),STHI
(C(681)yCVEM
(CLT51),TT7

+ ARES

’

r

'
4(C(91) ,NA ’
S{C{331),NE ’
6(C(»42) NELIPSY
7(C(545) yNSHLDS)
8(C(548) 4NVUFT )
9(C(551),RS )
A(C(563),RH ) .
B(C(566),SIGMA }
C(C(571),SOLABS) ,
D(C(641),CVCOND)
E(C(T41),TS )

FSSTTH(6) ,

REFS{10)

FNNTTH(20,420,6)
TTH(20,6) .
(20+6)
SR(6)

T(20,10) , F13

)
ND)
)
)
D)
S )
crR)}
)
)
)
)
CK)
S )
)

(C(21)
(C(a2)
(C(71)

D

(C(550),PI

(C(568),WI

(C(721),TH

L IR B IR IR I TR B SR P Py

Tstio0) ,

)
}
)
)
)
(C(562)4RST )
)
)
)
)
)

FSNHTT(20,6)
+ ARFA(20,T7)
R{20,7)
FSRTNH(20,6)

s Flé

)

+ ICONDR)
» NAT )
(C{31L1),4NET
(C(541),NCASE
(C(544) yNRNGS
{(CU547)4yNVUFH

(C(565),S0LAR
{C(601),CVABS

(C(771),REFS

DETERMINE THE RACII OF EACH ANNULI OF EACH SURFACE

FN=NRNGS

IF ( NRADS .NE. C )
NSP=NSHLDS+2

DO 101 J=14.NSP
SUMA=0.0

DO 102 N=1,NRNGS
FNI=N
IF (

FN=SQRT{FN

C ) FNI=SQRTI(F
GO TO 120
0.0 ) GO T0 10

NRADS «NE.
IF { J «NE. 1)
IF { SULAR .NE.
R{NsJ)=RH*FNI/FN
IF { NVUFH .EQ.
GO TC 130

IF ( J .EQ. NSP )} GO TO 122
RINy JY=RS(J-1I*FNI/FN
IF ( J .NENSP-1 .0R. J
IF ( J .EQ. NSP-1 JAND.

¢ ) GO 70 121

«NE. 2

NVUFT

)

NI)

1

) GO TO 121

«EQ. 0O ) GO TO

121

ARES(10}

FSNTTH(20,6)

’

AREAT(T)

r

?

LA IR T BRI DL T BRSNS Y

F23

F24

’
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121

122

130
102

131

101

301

303

302

132

105

VUFACL - EFN SOURCE STATEMENT -~ IFN(S) -

IF (J .EQ.2 .ANC. NVUFH .EQ.O0 ) GO TO 121

GO TC 130

IF ( N EQ. 1 ) AREA(1,J)=PI%R(1sJ)%%2

IF ( N oNE. 1 ) AREA(N,J)=PI%{ R(N,JI*%2 — R(N-14J)%%2 )
GO 7O 130

RIN»JI=RTHFNI/FN

IF ( NVUFT .EQ. C )} GO 7O 121

SUMA=SUMA + AREA(N,J)

CONTINUE

CALCULATE THE AREA OF THE PLANAR SURFACES

IF { SOLAR «NE. 0.0 .0R. J .NE. 1 ) GO TO 131
AH=SUMA

AREAT(1)=AH

GO TC 101

AREAT(J)=SUMA

IF ( J .EQes NSP ) AT=AREAT(J)

CUNT INUE

MF=NSHLDS+1

DO 103 M=1,MF

IF { M .EQ. 1 .AND. SULAR .NE. 0.0 ) GO TO 103

DETERMINE IF NON PLANAR SURFACES ARE INVOLVED.

IF { M JNE. 1 <AND « M .NE. MF ) GO TO 300

IF { NSHLDS .NE. O ) GO TO 301

IF ( NVUFT .EQ. C .AND. NVUFH .EQ. O ) GO TO 300
IF ( NVUFT .NE. C .AND. NVUFH .NE. O ) MX1=3

IF ( NVUFH .NE. O AND. NVUFT .EQ. O ) MX1l=l

IF ( NVUFT JNE. C «AND. NVUFH .CQ. O ) MX1=2

GO TO 302

IF (M .NE. 1 ) GO TO 303

IF { NVUFH .EQ. C ) GO TO 300
MX1l=1

GO TC 302

IF ( NVUFT .EQ. G ) GO TO 300
MX1=2

EXTRACT DATA FOR VIFW FACTORS FROM STORAGE.

IF (M .EQ. 1 ) MT=1

IF { M LEQ. MF) MT=MF
XOR=C(MT)I/RINRNGSyMT+1)

CALL TBVUF(1)

DO 105 N=1,NRNGS

SUMHL=0.0

DO 132 NN=1,NRNGS
FNNHTTINyNNyMI=FNNTTH(NNyNyM)I*AREA(NN,M+1) /AREA (N, M)
SUMHL= SUMH1l + FNNHTT{NsNN,M)}

CONT INUE

FNSHTT(NyM}=SUMH1
FSATTHINyM)=FNSHTT{N,M)*AREA(NsM)/AREAT(M+1)
FNHTSRINyM}= L.O0-FNSHTT{N,M)
FSRTNHINyMI=FNHTSRIN,M) *AREA{N,M)/ARES (M)
CONTINUE
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112

134

133

300

107

108

111

110

113

109
106

304
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CALCULATE THE VIEW FACTORS FROM AN ANNULUS TO A WHOLE SHIELD.

DO 133 N=1,NRNGS

SUMT1=0.0

DO 134 NN=1,NRNGS

SUMTL=SUMT1 + FNNTTH(Ny,NN,M)

CONTINUE

FNSTTH{N,M)=SUMT 1
FSNHTT(NyM)=FNSTTH{N,M)*AREA(N,M+1)/AREAT(M)
FNTTSRINsM) 1.C — FNSTTH(N,M)

FSRTNT(N.M) FNTTSR(NyM)*AREA(N,M+1}/ARES (M)
CONTINUE

GO TC 304

I"hon

CALCULATE THE VIEW FACTORS BETWEEN PLANAR ANNULIT.

DG 106 N=1,NRNGS
IF { N .EQ. 1 ) GO TO 107
CALL SUBVF ( 2 , R{NRNGSsM+1l)y 0.0y, R{(N-14M)y R{NsyM},y, D(M) )
FSNTTH{N,M)=F14
FNSHTT(N,M)=FSNTTH(N,M)*AREAT(M+1)/AREA(N,M}
GO TO 108
CALL SUBVF (1 , RINRNGS,M+1) , 0.0 » R(1,M) , 0.0 , D(M) )
FSNTTH(1,M)=F13
FNSHTT{1,M)=FSNTTH(1,M)*AREAT{M+1)/AREA(1,M)
FNHTSRUN,M)=1.C — FNSHTT(N,M)
FSRTNH{NsM) = FNFTSR{NyM)*AREA(N,M)/ARES(M)
DO 109 NN=1,4NRNGS
IF ( N 4EQ. 1 ) GO TO 110
IF ( NN EQ. 1 ) GO TO 111
CALL SUBVF ( 4,R(NN—-14M+1}) , R(NNyM+1)} 5 RIN-1,M) , R{N,M} , D(M)})
FNNTTH(NNsNyM}=F24
FNNHTT{NyNNyM)I=FNNTTH(NN,N,M)}*AREA(NN,M+1) /FAREA (N, M)
GO TO 109
CALL SUBVF ( 2 4 RUL1sM+1) , 0.0 5 R{N—-L14M) 5, R(NsM) , DIM) )
FNNTTH(14NyM)=F14
FNNHTTIN, LyMI=FNNTTH(L,NyM)*AREA(L1,M+1)/AREA(N,M)
GO TC 109
IF ( NN JEQ. 1 )} GO TO 113
CALL SUBVF ( 3 5, RINN-1,M+1) 5 R{NN,M+1) , R{l,M) 4, 0.0 , D(M) )
FNNTTH(NNy1,M) = F23
FNNHTTC(1oNNyM)=FNNTTH(NN,14M)I*AREA(NN,M+1) /AREA(1,V)
GO TC 109
CALL SUBVF (1 4 R{1lyM+1) 4, 0.0 4 R{1yM) 4, 0.0 , DI(M) )
FNNTTH(l,1,M)=F13
FNNHTT(1,1,M)=FNNTTH({1,1,M)*AREA(L,M+1)/AREA(]L M)
CONT INUE
CONT INUE
GO 70 112

CALCULATE VIEW FACTURS BETWEEN WHOLE SURFACES.

SUMSR1=0.0
SUMSR2=0.0
SUMT3=0.0



114

103
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SUMH3=0.0

DO 114 N=1,NRNGS

SUMSRL= SUMSR1 + FSRTNH(N,M)
SUMSR2Z2=SUMSR2 + FSRTNT(N,M)
SUMT3=SUMT3 + FSNTTH(N,M)
SUMH3=SUMH3 + FSNHTTI(N,M)
CONT INUE

FSRSR(M)} = 1.0-SUMSR1-SUMSRZ2
FSSTTH(M)=SUMT3
FSSHTT(M)}=SUMH3

CONTINUE

RETURN

ENDC

SOURCE STATEMENT

IFN(S)
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SUBRUOUTINE SUBVF(TJ,R1A,R2A,R3A,R4A4ALA)

COMMUN / EAS / AT 4 AH , QOA , T(20,10) 4 F13 , Fl4 , F23 , F24
DOUBLE PRECISION R1,R2,R34R4,AL,C1,C2,C3,C4,(5,C64C7+C8,C9
R1=R1A

R2=R2A

R3=R3A

R4=R4A

AL=ALA

GO TO (142+344),1J

CALCULATE THE VIEW FACTOR BETWEEN TWO DISKS

Cl = (le+(R3I¥FE2+ALFE2)/RLIFF2 V%24 % (RI%*%2) /R1%%2
F13 = 45%( Lo+ (R3%%2+AL*%2)/R1%%2-SQRT(C1}}
RETURN

CALCULATE THE VIEW FACTOR BETWEEN A DISK AND AN ANNULUS

c2 (Lot (R4XH24+AL¥K2)/R1I%¥2 V%424 % (RG4¥%2) /RL*%2
c3 (Lo+{RIFH2+AL¥%¥2)/R1%%2)¥%2-4, % (RI¥*2)/RLI%*2
Fla = 5%( (R4¥%2-R3%%2) /R1¥%¥2-SQRT(C2)+SQRT(C3))
RETURN

ol

CALCULATE THE VIEW FACTOR BETWEEN AN ANNULUS AND A DISK

C4=(R2%¥24RI¥¥2+ AL ¥ %2 )%%2- (2. ¥R 2*¥R3) %% 2

C5 = (RLIF2+R3*%2HAL*%2) %% 2— (2. kR1*R3 ) **2

F23 = (.5/(R2%%2-R1%%2))%(R2%%2-SQRT{C4)+SQRT(C5)-R1*%2)
RETURN

CALCULATE THE VIEW FACTOR BETWEEN TWO ANNULI

C6 = (RZ2¥%2+RBxk2+AL%¥2 ) %%2— (2. %R2*¥R3}**2

C7T = (R2%¥%2+R4%%2+AL%%2)¥%2— (2. %¥R2%R4) ¥%2

C8 = (RIFH24+R4¥kH2+AL®*2)¥%2— (24 %R 1*R4)*%2

C9 = (RI*%2+4RIxkZ2HAL¥%2)*¥%2—- (2. %R1*¥R3}*%2

F24 = {.5/(R2%%2-R1*%2) )% (SQRT(C6)-SQRT(CT)I+SQRTI(C8I-SQRTI(CI))
RETURN

ENLC
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SUBROUT INE SHCLC

THIS ROUTINE CALCULATES THE RADIAL TEMPERATURE DISTRIBUTION OF A
SHIELD ASSUMING THAT THE TEMPERATURES OF THE ADJACENT SURFACES ARE
KNCWN

DIMENSION ES(L0) » ABSR(10) , REFS(10) o TS(10) , ARES{10)

COMMON / T2 /7 Al4l,41) 4 Ql41)

EQUIVALENCE ( A(1),8B )

DIMENSION B(41l,41)

DIMENSION DB{20,2C) , DI{(20,20) , DUMMY{20)

COMMON / CONDT/ COND(20,10) 4 RES(20,10)

COMMON/NEW/ FSSHTYT(6) 5, FSSTTH(6) y FSNHTT(2046) , FSNTTH(204+6)
FNNHTT(2042046) 5 FNNTTH(20,20,6) , AREA(20,7)
FNSHTT(20,46) 4 FNSTTH(20,6) 5, R(20,7) 5, AREATI(7) ,

FNHTSR{2046) 4, FNTTSR(20+6) » FSRTNH(20,6) »
FSRTNT(20+6) » FSRSR(6)

COMMON / BULL/ EMS(2049,2) , AB(20,942) 5 REF(20,9,2)

COMMON / EAS / AT 4, AH , QDA , T(20,10) 4 F13 , Fl4 , F23 , F24

COMMON / KSLV / TO(20,10) , tO0OK » LCOND 4 ICOND , NCALC , TMAX

COMMCN C(1000)

EQUIVALENCE

L(C(1) 4ABSR

HWN -

(C({11) ,ARES ) (Ct21) ,DIS )

) y b4 ’

2(C(31) LES ) » (C(41) 4 IVCOND) » (Cl42) ,ICONDR} o
3(C(43) LITMAX ) , (C(51) 4NAH ) » (CLT71) SNAT )
4(C(91) 4NA ) » (C(231),NEH ) o (C{311),NET )
5(C(331),NE ) » (C(531)4NCOND ) 5 (C{541)4NCASE ) ,
6{C(542)4yNELIPS) , (C(543),NRADS ) » (C(544),NRNGS )}
TIC(545) 4NSHLDS) , (C(546),NCALCR) » {CU{54T),NVUFH )} ,
B(C(548)4NVUFT ) , (C(549),4PHI ) » {(C(550),P1 } oy
FIC(551)4RS ) » (C(561)4RSH ) » {(C(562),RST |
A{C(563),4RH ) 2 (C(564),RT } 9 (C(565),SOLAR )
B{(C(566),SIGMA ) 4, (C(567),TOL ) 9 (C(568),WI ) »
C(C(571),S0OLABS) » (C(591)ySTHICK} s (C(601),CVABS )}
D(C(641),CVCOND} , (C(681),CVEMS )} , (C{721),TH )
E{(C(741),TS Y o (C(T751),TT7 ) 9 (C(T7L)},REFS )

DO 1 M=1,NSHLDS

SUMET=0.0

SUMQX=0.0

IF { M .NE. 1 .0OR. SOLAR .EQ. 0.0 ) GO TO 15
CALCULATE HEAT TRANSFER DUE TO SGLAR FLUX.

DO 17 N=1,NRNGS

IF { N «EQ. 1 ) G{1)=PHI*PI*R(1,2)%*2%SOLABS/SIGMA

IF ( N oNE. 1 ) QUINI=PHI*PI*(R{Ny2)*¥*%2-R{N-142)%%2)*SOLABS/SIGMA
IF ( ICOND +EQ. 2 ) GO TO 7

DO 18 NN=1sNRNGS

DINsNN)=0.0

IF { N.EQ. NN ) C(NsNN) =-EMS(NN,2,1)
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SHCLC - EFN SOURCE STATEMENT - IFN(S) -

CONTINUE
GO 10 17
SUMQX=SUMQX-EMS(NNy 24 1) *AREA(NN,2)
CONTINUE
GO TO 16

CALCULATE HEAT TRANSFER FRUOM SURFACE CLOSER TO HEATER.

CALL COEF(M,B)

IF ( ICOND .EQ. 2 ) GO TO 11

DO 30 N=1,NRNGS

Sur¥Q=0.0

L=N+NRNGS

DO 21 NN=1,NRNGS

SUMQ= SUMQ + BINN,L)*T{NNyM)*k&4%EMS(NNsM,2)*AREA (NN, M)
K=NN+NRNGS

DK=0.0

IF { N .EQ. NN ) DK=1.0

D(NyAN)=( BI(KysL)-DK)*CMS{NNyM+1,1)

CONTINUE

QIN)=SUMQ + B(Z2*NRNGS+1yL)*TS(MI¥*4%ES(M)¥ARES (M)
CONTINUE

GO TC 16

SUMET=0.0

SUMEX=0.0

DO 12 N=1,NRNGS

L=N+NRNGS

SuM@=0.0

SUM1=0.0

DO 13 NN=1,NRNGS

K=NN+NRNGS

SUML = SUM1 + B(K,L)*EMS(NNyM+1,1)*AREA(NN,M+1)
SUMQ = SUMQ + B(NN,L)*¥EMS(NN,M,2)* AREA(NNyM)*T (NNsWV) **4
CONTINUE

SUMQX=SUMQX+SuUM1

Q{N) = SUMQ + B{2ENRNGS+1,L)*TS(M)*x%4%ES(M)*ARES (M)
SUMQT=SUMQT-0(N)

CONTINUE

CALCULATE HEAT TRANSFER FROM SURFACES CLOSER TO TANK.

CALL COEF{ M+l , A)

IF ( ICOND .EQ. 2 ) GO TO 2

IF ( NCALC .EQ. O .OR. ICOND .NE. O ) GO TG 3

DO 4 N=1,NRNGS

SUMQ=0.0

DO 5 NN=1,NRNGS

K=NN+NRNGS

SUMQ = SUMQ + A(KyNI*EMS(NNyM+2, 1) ¥T{NN,M#2) %24 =AREA(NN,M+2)
DK=0.0

IF { N .EQ. NN ) DK=1.0

DINsAN) = ( ( A(NNyN) - DK I*EMS(NN,M+1,2) + D(N,NN) )*
1 AREA(NN M+ 1 )*T(NNgM+1)**3

IF { N .NE. NN ) GO TO 6

IF { NeNE. 1 ) DI(N,NN)=D(NyNN) — CONDI(N—-1,M)/RES(N-1,M}

IF ( N .NE. NRNGS ) D(NyNN) = D(NyNN) — COND(NyM)/RES(NyM)
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24
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SHCLC - EFN SOURCE STATEMENT - IFN(S) -

GO T0 5

IF [ N.EQe NN+1 ) DUN,NN) = D(N,NN) + COND(N-1,M)/RES(N-1,M)

IF { N «EQe NN—1 ) DI(NyNN}=D(N,NN) + COND(NyM)/RES(N,M)

CONTINUE

QIN) = - QIN) — SUMQ - A{2*%NRNGS+1,N)%®TS{M+1)**4%ES(M+1) *ARES(M+])
CONTINUE ’

GO TC 9

DO 8 N=1,NRNGS

SUMG=0.0

DO 10 NN=1,NRNGS

K=NN+NRNGS

SUMQ = SUMQ + ALK N)I*TINNyM+2)%%4%EMS(NNsM+2,1) *AREA(NNyM+2)
DK=0.0

IF ( N -EQ- NN ) DK=1.0

DINeNN) = ( AINNyN) - DK I*EMS{NNsM+1,2) + D(N,NN)

IF { ICOND .NE. C ) GO TO 10

IF ( N .NE. NN ) GO TO 28

IF { N oNE«a L ) CU{NsgANI=D(NyNN)-CONDI{N-LyMI/TIN,M+1LI%%3/RES{N-1,M)
IF(C N «NE. NRNGS) NDINyNN)I=D(NyNN)-COND(N,M)/T(N,M+1)*%3/RES(N,M)
GO 70 10

IF(N +CQe NN+LID(N,NNI=D(NyNN)+COND(N—=1,M)/TINNyM+1)}**3/RES(N-L1,4M)
IF(N <EQe NN=1) EC(NyNN)=D(NyNN)}+CONDINsyM)/T{NNyM+1)%%3/RES(NyM)
CONTINUE

QIN) = —Q(N) - SUMQ — A(2%NRNGS+14NIRTS{M+1)**4%ES{M+1)*ARES(M+1)
CONTINUE

IF ( NRNGS .NE. 1 ) GO TO 14

DI(l,1)=1.0/D(1,1)

GO TG 19

CALL FACTOR( D » DUMMY , NRNGS , 20 )

CALL INVERT( D , DUMMY , NRNGS , 20 , DI )
DO 22 N=1,NRNGS

SUM=0.0

DO 23 NN=1,NRNGS

SUM = SUM + DI(N,NN)*Q(NN)

CONTINUE

IF { NCALC .EQ. C .0OR. ICOND .NE. 0 ) GO TGO 24
IF ( ABS({(SUM)} .GT. 1.0E04 ) TMAX=1.0

IF ( TMAX «NE. 0.0 ) RETURN

IF ( SUM .LT. 0.0 ) SUM=0.8%T{NysM+1)
T(Ny,M+1)=SUM

GO 10 22

IF ( SUM .GT. L.0EL5 «OR. SUM L T. 0.0 ) TMAX=1.0
IF ( TMAX .NE. 0.0 ) RETURN

TINyM+1) = ( SUM/AREA(NsM+1) )*%0.25

CONTINUE

GO TC 1

CALCULATE SHIELD TEMPERATURE FOR INFINITELY CONDUCTING SHIELD.

DO 25 N=1,NRNGS

SUMZ2=0.0

SUMQ=0.0

DO 26 NN=1,NRNGS

K=NN+NRNGS

SUM2 = SUM2 + A(NN/JN)I*EMS(NNsM+1,2)*AREA{NN,M+1)

SUMQ= SUMQ + A(KyN)*T(NNyM+2)**4*EMS(NNyM+2,1)*AREA(NN, M+2)
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SHCLC ~ EFN

CONT INUE

SOURCE STATEMENT - IFN(S)

QIN) = SUMQ + A{2Z2%NRNGS+LyN}*TS(M+1L)%%4*%ES(M+]1)*¥ARES(M+1)

SUMGX = SUMQX + SuM2 -
SUMQT = SUMQT -QI(N)
CONT INJE

{ EMS{N,M+1,1)

T(lyM+1l) = (SUMQT/SUMQAX)*%0.25

DO 27 N=1,NRNGS
TINsM+1)=T(1yM+1)
CONT INUE

CONT INUE

RETURN

ENC

+ EMS{N,M+1,2)

)*AREA{N,M+1)
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DECK

SUBRCGUT INE COEF

(

MM , B )

THIS SUBROUTINE CETERMINES THE VALUE OF THE COEFFICIENTS ( B
USED TO FIND YHE HEAT TRANSFER.

DIMENSION ES(10}

COMMON/NEW/ FSSHTT(6) ,
FNNHTT(20,20,6)
FNSHTT(20,6)

FNHTSR(20,6) ,
FSRTNT(20,6)

COMMON / BULL/ EMS(20494,2)
DIMENSION A(41l,41) ,

S WN -

v ABSR(10) ,

DIMENSION B(4l,41)

COMMON C(1000)
EQUIVALENCE
1(C(1) 4ABSR )
2(C(31) HES )
3{C(43) »ITMAX )
4{C(91) 4NA )
5(C(331),NE )
6(C(542)4NELIPS)
T{C(54%5) yNSHLDS)
8(C(548)yNVUFT )
9(C(551),RS )
A(C(563),RH )
B(C(566),SIGMA }
C{C{571),S0LABS)
D(C{641),CVCOND)
E(C(741),TS )
M=MM

NDIM=41
NS=NRNGS+1
NF=2%NRNGS

DO 4 N=1,NRNGS

CALCULATE THE VALULS OF THE MATRICES A AND Y BETWEEN ONE SURFACE

ANC ITSELF

DO 1 NN=1,NRNGS
Y(NsNN)=0.0
[F ( N OEQ.
A(NsNN)=0.0
GO TG 1
A(N,f\N)=—l.0
CONT INUE

NN )

CALCULATE THE VALUES OF THE MATRICES A AND Y BETWEEN ONE SURFACE

“ W @ W ¥ W W e W W e v e ow

REFS(10)
FSSTTH(6)

r

FNNTTH(20,20,6) »
FNSTTH(20,6)
FNTTSR(20,6)
FSRSR(6)
AB(20,9+2)

TS(10) ,
FSNHTT(20,6)

R{20,7)

ARES(10)

y FSRTNH(20,6)

FSNTTH(204+6)
AREA(204+7)

AREAT(T)

r

REF(2049+2)

Y{4l,41) 4 AI(41,41) , DUMMY(41])
{C(11) ,ARES ) , (C(21) ,D )
(C(41) ,IVCOND) , (C(42) L,ICONDR) ,
(C(51) 4NAH ) 9 (CUT1) LHNAT
(C(291),NEH ) » (C(311),NET | I
(C(531),NCOND ) , (C(541),NCASE ) ,
(C(543)4NRADS ) , (C(544),NRNGS )} ,
(C(546)yNCALCR) 4, (C(547),NVUFH ) ,
(C(549),PHI )y (C(550),PI ) s
(C(561)4RSH ) 9 (C(562)4RST ) o
(C(564),RT ) 2+ (C(565),SOLAR } ,
(C(567),TOL ) 9 (C(568),WI b
(C(591),STHICK)} , (C(601),CVABS ) ,
(C(681),CVEMS ) , (C(T21),TH )
(CU751),TT ) o (CUT771),REFS )

GO TO 2

AND THE OTHER SURFACE

)

4

’
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10

12

11

.

CDEF ~ EFN SOURCE STATEMENT - IFN{(S) -

DO 3 NN=NS,NF

N1=NN-NRNGS

A(NyNN)=REF(N1yM+1, L)XFNNHTT(NyN1,M)
Y{NyAN)= —AB(NLyM+1,1)*FNNHTT(NyN1yM)
CONTINUE

CONTINUE

DO 5 N=NS,NF

CALCULATE THE VALUES OF THE MATRICES A AND Y BETWEEN THE OTHER
SURFACE AND THE CRIGINAL SURFACE

N1=N-NRNGS

DO 6 NN=1,NRNGS
ACNyNN}=REF(NNyM,y2)*FNNTTH{NL1,NN,M)
YINyAN)= —AB(NN, VM, 2} *FNNTTHINLyNN,M)
CONTINUE

CALCULATE THE VALUES OF THE MATRICES A AND Y BETWEEN THE OTHER
SURFACE AND ITSELF

DO 7 NN=NS,NF
Y(NsAN)=0.0

IF(C N .EQ. NN ) GO TO 8
A(NyAN)=0.0

Go TC 7

A{NyAN)=—1.0

CONTINUE

CONTINUE

CALCULATE THE VALUES OF THE MATRICES A AND Y BETWEEN THE SURFFACES
ANEC THE SURROUNDINGS.

DO 9 N=1,NF
IF ( N .GT. NRNGS) GO TO 10

A(NF+14N) = REF{NyM, 2)%FSRTNH(NsM)
YINF+LyN) = —AB(NyMy2)%FSRTNH(N,M)
GO TG 9

N1=N-NRNGS

A(NF+LyN)I=REF(NL,M+1, 1} %FSRTINTI(NL,M)
Y{NF+1yN)= ~AB(N1,M+1y1)*FSRTNTI(NL1,M)
CONTINUE

DO 11 N=1,NF

IF { N «GT. NRNGS ) GO TO 12
A{NsNF+1)=REFS{M)*FNHTSR(NsM)

Y(NyNF+1) = — ABSRIM)XFNHTSR(N,M)
GO TC 11

N1=N-NRNGS
A{NyNF+1)=REFS(M)*FNTTSR(N1,M)
Y(NyNF+1)= — ABSR(M)I*FNTTSR(NL,M)
CONTINUE

ACNF+1,NF+1)= REFS(M)*FSRSRIM) - 1.0
Y(NF+1,NF+1) = —ABSR(M)*FSRSR(M)
NFZ=NF+1

DETERMINE THE INVERSE OF THE MATRIX A



[eNeNe!l

14

13

COEF - EFN

CALL FACTOR ( A 4 DUMMY ,
CALL INVERT ( A , DUMMY ,

CCMPUTE THE VALUES OF THE ABSORPTION COEFFICIENTS

DO 13 I=1lyNFZ

DO 13 J=i.NFZ

SUM=0.0

DO 14 K=1,NFZ

SUM= SUM + AT{I,K)I*Y(K,J)
CONTINUE

B(IyJ)=SUM

CONT INUE

RETURN

END

SOURCE STATEMENT

IFN(S)

(8)

(B=ATI*Y)
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9 CALL COEF (

DECK

SUBRCUT INE QDOT

THIS SUBROUTINE CETERMINES THE HEAT TRANSFER TO M ,
SURRCUNDING SURFACES

DIMENSION ES(10)

COMMON / EAS / AT
CCMMCN/NEW/ FSSHTT(6) ,

HWN =

1

’

ABSR{10) ,

AH

FSSTTH(6) ,

FNTTSR(20,46) ,

QOA ,

FNNHTT (20420456} »

FNSHTT (20,61}
FNHTSR(20,61)

FSRTNT(2046)

s+ FNS

s FSR

COMMON / BULL/ EMS(2049+2) , A

COMMON /T3/7 QOA2

1

QSUR

COMMCN / T2 / Bl4l,41)

COMMON C(1000)
EQUIVALENCE
1(C{Ll) +ABSR )
2(C(31) HES )
3(C(43) 4 ITMAX )
4(C(91) sNA )
5(C(331)sNE )
6(C(542)yNELIPS)
7(C(545) yNSHLDS)
TLC(545)4NSHLDS)
8(C(548)yNVUFT )
9(C(551) +RS )
A{C(563),RH )
B(C(566)+SIGMA )
C(C{571)4SUOLABS)
D(C(641)4CVCOND)
E(C(741),7S )
M=NSHLOS+1

IF ( M .NE. 1

?
?
?
?
?
4
?
?
?
’
1
?
4
!
?

- 0R.

(
(
(

c(11)
Cl4l)
C(51)

’

QOAS
Q{41)

+ ARES
2 IVCO
» NAH

(C(291)4NEH

(C(531),NCOND )
(C(543)4NRADS )
(C(546)9yNCALCR)
{C(546)4NSTEP )

(C(549),PHI
(C{561),5RSH
(C(564),4RT

(C(567),T0L

(C({591),STHICK
{C(681),CVEMS

(CUT751),77

SOLAR

-EQ.

TS5(10
F13

REFS({10} ,
T(20,10)

FNNTTH(20,20,6)
TTH(2046)

SR{6)
8(201912) 24

(C(21)
{(C(42)
(Ct71)

}
ND)
)
)

D

(C(550),PI

(C(568) 4 WI

{(C{721),TH

LI B IR T R R O R ROy

)
)
)
)
)
)
)

~—

0.0 GO 10 9

CALCULATE THE HEAT TRANSFER DUE TO SOLAR FLUX.

QSUM=0.0

DO 8 N=1,NRNGS
IF ( N «EQ. 1)
IF ( N .NE. 1)

QI(N}= QI(N)/SIGMA -

QSUM=QSUM + QI(N)
CONTINUE

QIN)=PHI*PI*R(1,2)**2%SOLABS
CIN)=PHI*PI*(R{Ny2)% %2 — R(N—-1,2)*%2})*SOLABS
EMS(N 231 )*AREA(N2I%T{Ny2)*%4

QCA=QSUM/AREAT(2)*STGMA

Q0OAS=0.0
QSUR=0.0
Q0A2=0.0

RETURN

M,

B

)

)

?

FSNHTT(20,46)

r

(C(562),RST
(C(565),SOLAR

(C(601),CVABS

(C{771),REFS

y A
Fl4

’

ARE

R(20,7) o
FSRTNH(2046})

)

¢+ ICONDR)
o NAT

(C(311),NET

(C(541)4NCASE
(C(544) 4NRNGS
(C{547)4NVUFH
(C(547)yNVUFH

)

)
)
)
)
)
)
)
)
)
)
)
)

M+1

RES(10)
y F23 ,

AND

F24

FSNTTH(20,6)

A(20,7)
AREAT(7)

REF(2049,2)

® W 4 M W W W W Y Y e o w o ww

?

’
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QDOT - EFN SOURCE STATEMENT - IFN(S) -

NS=NRNGS + 1
NF=2%NRNGS
NZ=NF+1

CALCULATE THE HEAT TRANSFER TO THE TANK. QUJ+NRNGS) IS THE HEAT
TRANSFERED TO THE J TH ELEMENT ON THE TANK

QSUM=0.0

DO 13 N=NS,NF

SBE=0.0

DO 14 NN=1,NF

IF( NN «GT. NRNGS ) GO TO 15

SBE= SBE + BINNyN)IRT(NN,M)*%4¥EMS{NNyM,2)*AREA(NN,M)
GO TO 14

NL1=NN-NRNGS

SBE = SBE + BINNyN)®T{NLyM+1)%¥4%EMS(NL1,M+1,1)*AREA(NL,M+1)
CONT INUE

SBE = SBE + B(NF+L,N)*TS{M)%*4*ES(M)*ARES(M)
N1=N-NRNGS

Q(N) = SBE — TINlyM+L)®*4*EMS(NL,M+1,1)*AREA(NL,M+1)
QSUM=QSUM+Q(N)

CONTINUE

QOA=QSUM/AREAT(M+1)*SIGMA

CALCULATE THE HEAT TRANSFER TO THE SURFACE ADJACENT TO THE TANK.

QSUM=0.0

NF=2*%NRNGS

DO 10 N=1,NRNGS

SBE=0.0

DO 11 NN=1,NF

IF ( NN.GT. NRNGS ) GO TO 12

SBE = SBE + B{NNyN)*TINNyM)E=4EEMS(NNyMy2) *AREA (NN, M)
GO TC 11

N1=NN-NRNGS

SBE=SBE + B(NNyN)*T(NL,M+L)*%4%CMS(NL,M+1, 1) *AREA{NL,M+1)
CONTINUE

SBE=SBL + BINF+LyN)*TS(M)%*:4%ES(M)*ARES(M)

QIN)= SBE =T (NyM)*%4%EMS{NyM,2)*AREA(N,M)

QSUM=QSUM + QI(N)

CONTINUE

CALCULATE THE HEAT TRANSFER TO THE SURRQOUNDINGS.

ADVU=AREAT (M)

IF { M .EQ. 1 .AND. SOLAR .NE. 0.0 ) ADVD=AREAT(M+1)
QOA2=QSUM/ADVD%SIGMA

QSUR=0.0

DO 17 N=1sNF

IF ( N .GT. NRNGS ) GO TO 16

QSUR = QSUR + BINyNF+1)%T{N,M)* k4% EMSINsMy2)*AREA(N, M)

GO TG 17

N1=N-NRNGS
QSUR=QSUR+B(N,NF+1)*T(NLyM+L)%R*x4=EMS(NLsM+1, 1) *AREA(NLyM+1)
CONT INUE

QSUR = QSUR + ( B(NF+1yNF+1) — 1.0 )I*TS(M)#*4%ES(M)*ARES(M)
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10

20
30
40

50

SUBRCUTINE FACTOR(A,ROW,O0RDER,DIM)

FACTQR THE MATRIX A INTO TWO TRIANGULAR MATRICES ONE OF WHICH
HAS A UNITARY DIAGONAL.

A THE MATRIX OF SIZE ORDER WHICH IS TO BE INVERTED.

D THE INVERSE OF A. ( USED IN INVERT )

ORCER THE LENGTH OF EACH SIDE OF THE MATRICES A AND D.

DIM THE DIMENSION OF THE MATRICES A AND D AND THE VECTOR ROW
IN THE CALLING PROGRAM.

ROW A DUMMY VARIABLE OF LENGTH DIM TRANSFERED FROM THE CALLING
PROGRAM.

INTEGER ONE,TWO,ROWsORDER,DIM
DIMENSION A(DIM,CIM),RIN(DIM)
DOUBLE PRECISION T,ZERO
REAL MAX

DATA ZERO/0.0DC/
N=0ORDER

ASSIGN 150 TO ONE
ASSIGN 160 TO TwC

DO 95 I=1,N

IPl=1+l

IMl=1-1

GO TO ONE,(10,150)

D0 30 L=1I,N

T=ZERO

DO 20 K=1,IM1
T=T+A(K, 1) *A(L,K)
A(Ly1)=A(L,1)-T

MAX=0.0

DO 50 L=I,N
IF(ABS(A(L,1)).LE.ABS(MAX))GO TO 50
NI=L

MAX=A(Ly 1)

CONT INUE
IF(MAX.EQ.0.0)60 TO 140
ROW(T)=NT

IF(I.EQ.NI)GO TO 180

D0 6C K=1,N

S=A(I,K)

ACLyKI=AINI,K)
A(NI,K)=$

GO TO TWO,(70,16C)

DO 90 L=IP1,N

T=ZEROD

DO 80 K=1, 1M1
T=T+A(L s K)*A(K,L)
ACT,L)=(ALI,L)=T)/MAX
CONT INUE

ORCER=IM1
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FACTOR - EFN SOURCE STATEMENT - IFN(S) -

WRITE(64141)
141 FORMAT(/ S3H SUBROUTINE FACTOR HAS ENCOUNTERED A SINGULAR MATRIX.)
CALL EXIT .
150 ASSIGN 10 TO ONE
GG TC 40
160 DO 170 L=2,N
170 A{1,L)=A(1,L)/MAX
ASSIGN 70 TO TWO
GO TO 935
180 IF(1.EQ.N)RETURN
GO TO 65
ENC

ERROR MESSAGE NUMBER 1
ERROR MESSAGE NUMBER 2

ERROR MESSAGE NUMBER 3
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$IBFTC INVERT DECK
SUBRGUT INE INVERT(A,ROWy0RDER,DIM,D}

DETERMINE THE INVERSE OF A FROM THE TWO TRIANGULAR FACTORS OF A

[z eNe]

INTEGER ROWsONE,LCIM,0RDER
DIMENSION A(DIM,CIM),ROW(DIM)},D(DIM,DIM)
DOUBLE PRECISION T,ZERD
DATA ZER(Q/0.0DO/
N=CRDER
ASSIGN 60 TO ONE
I=N
5 IP1=1+1
IMLl=1-1
DO 30 M=1,1
L=1IP1-M
T=ZERCG
GO TC ONEs (10460}
10 LP1=L+1 .
DO 20 K=LP1l,N
20 T=T+A(K,L)*D{I,K)
30 D(T,L)=(FLOATI(L/I)-T)/A(LsL)
IF{1.CQ.1)GO TO 70
DO 50 M=1,IM1
L=1-M :
T=ZERD
LPl=L+1
DC 40 K=LPl,N
40 T=T+A{L,K)*D(KyI)
50 D{L,I)=-T
I=IM1
GO TC 5
60 ASSIGN 10 TO ONE
GO TC 30
70 I=nNn-1
80 K=ROW(1)
DO 90 L=1,N
S=0(L,I)
D(Lv1)=D(LvK)
90 D(LsK)=S
IF(I1.EQ.L)RETURN
I=1-1
GO0 TC B8O
ENC

ERROR MESSAGE NUMBER 1



LISTING OF INPUT

sQuUTPUL
ICONDR= 1, 1THAX = 2C0, 1VCOND= 1, NCALCR=
NELIPS= 0, NRADS = 1, NRNGS = 20, NSHLOS=
NVUFT = 0, PHI = 4,4200000E 02, RH = 0. » RSH =
RT = 1.0000000F CO, SIGMA = 1.7130000E-C9, SOLABS= 449999999E-02, SQLAR =
$ END

TBABSL 0.2000E-01 O. - Q. TBEMS1 0.2000E-01
SHIELD RADIUS = 0.100CE Ol 0.1000E Ol

PROPERTIES DUF SURRQUNDINGS BETWEEN SURFACES

SPACING CISTANCE AREA ABSORPTIVITY EMISSIVITY TEMPERATURE
2 0.100 L.000 1.000 1.000 0.
3 0.100 1.000 1.000 1.c00 0.

NELB = 1
NALB = 1
NELIT = 1
NALT = 1
NE2R = 1
NA2B = 1
NEZ2T = L
NA2T = 1
NET = 1
NAT = 1
17 = 37.000
LISTING OF OUTPLT
NO. ITERATIONS = 4 SOLAR = 1. QOAT = 0.1188E 00 TOLX=0.01C00
M TEMP R{N} RINI/RS
1 712.855 0.224 0.224
112.292 0.316 0.316
771.660 0.387 0.387
7711.002 0.447 0.447
770.325 0.500 0.500
769.630 0.548 0.548
768.918 0.592 0.592
768.188 0.632 0.632
767.440 Q.671 0.671
166.672 0.707 0.707
765.882 0.742 0.742
765.069 0.775 0.775
764.231 0.806 0.806
763.363 0.837 0.837
762.462 0.866 0.866
761.525 0.894 0.894
160.548 0.922 0.922
759.530 0.949 0.949
758 .486 0.975 0.975
757.460 1.000 1.00C
M TEMP RN} R(NJI/RS
2 443.449 0.224 0.224
440.095 0.316 0.316
4364257 0.387 0.387
432.164 0.447 0.447
427.846 0.500 0.500
423.298 0.548 04548
418.505 0.%92 0.592
413.443 0.632 0.632
408.081 D.671 0.671
402.378 0.707 0.707
396.284 0.1742 0.742
489.737 N.775 0.779
382.650 0.806 0.806
374.913 0.837 0.837
366.367 0.866 0.86¢6
356.787 1.894 0.894
345.835 0.922 0.922
333.038 0.949 0.949
317.852 0.975 0.975
300.015 1.000 1L.000

90

0.

1,
2y
0. .

1.0000000E 00,

0.

NCASE
NVUFH
RST

TOoL

0,
0. '

1.0000000E~02,



NO.

ITERATIONS =

-X

NI

TEMP
772.855
772.292
771.660
771.002
770.325
769.630
768.918
768.188
767.440
766.672
765.882
765.069
164.231
163.363
T62.462
761.525
760.548
759.530
758.486
757.460

TEMP
443,449
440.095
436.257
432.164
427.846
423.298
4184505
413,443
408.081
402.378
396.284
389.737
382.650
374.913
366.367
356.787
345.835
333.038
317.852
300.015

2

SOLAR

R{N)
0.224
0.316
0.387
0.447
0.500
0.548
0.592
0.632
0.671
0.707
0.742
0.775
0.806
0.837
0.866
0.894
0.922
0.949
0.975
1.000

RN}
0.224
0.316
0.1387
0.447
0.500
0.548
0.592
0.632
0.671
0.707
0.742
0.775
0.806
0.837
0.866
0.894
0.922
0.949
0.975
1.000

1.

R{N)/RS
0.224
0.316
0.387
0.447
0.500
0.548
0.592
0.632
0.671
0.707
0.742
0.775
0.806
0.837
0.866
0.894
0.922
0.949
0.975
1.000

R(N) /RS
0.224
0.316
0.387
0.447
0.500
0.548
0.592
0.632
0.671
0.707
0.742
0.775
0.806
0.837
0.866
0.894
0.922
0.949
0.975
1.000

COAT =

©.1188E 00

TOLX=0.00500
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Figure 2. - Representation of hollow
structural member. Inside surface
diameter of strut, d,; outside sur-
face diameter of strut, dg; strut
length, 1; temperatures at ends of
strut, T and Ty, distance along
strut, x.
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Figure 3. - Comparison of analytic and experimental heat-transfer rates.
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Figure 4. - Comparison of analytic and
experimental temperature distribu-
tions for three blackened Mylar shieids.
Spacing ratio, LTI R = 0.628.
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Figure 5. - Comparison of analytic and experimental
temperature distributions for targeted shield
system. Spacing ratio, Lt/R = 0.47; two shields.
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Figure 6. - Comparison of analytic and experimental strut
temperature distributions,



Heat-transfer ratio, Q}

Heat-transfer ratio, O}

Emissivity,

.01 .02 .03 o4 .06 .08 .1 .2 .3 .4 .6 .8 10
Spacing ratio, Ly/R
Figure 7. - Ratio of specular heat-transfer rate to diffuse heat-transfer rate as function of spacing ratio and
emissivity. No shields; uniform radiosity.
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Spa.cing Eatio, Lr/R

Figure 8. - Ratio of specular heat-transfer rate to diffuse heat-transfer rate as function of spacing ratio and
emissivity. One shield; uniform radiosity.
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Figure 9. - Ratio of nonuniform radiosity heat-transfer rate to uniform radiosity heat-transfer rate as function of
spacing ratio and emissivity. No shields.
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(a) Nonconducting shield.
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(b) Uniform temperature shield.

Figure 10. - Ratio of nonuniform radiosity heat-transfer rate to uniform radiosity heat-transfer rate as function
of spacing ratio and emissivity. One shield.
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Figure 11. - Heat-transfer rate as function of emissivity for
different surface assumptions. No shields.
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Figure 12. - Heat-transfer rate as function of emissivity for different
surface assumptions. One shield.
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Spacing ratio, Ly/R

Figure 13, - Increase in heat-transfer rate due to specular surfaces as function of spacing ratio and source
temperature ratio. Emissivity, 0.02; no shields.
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Figure 14. - Heat-transfer rate as function of emissivity and
spacing ratio for two oblate spheroids. No shields.
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Figure 15. - Heat-transfer rate as function of emissivity and
spacing ratio for two oblate spheroids. One shield.
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Figure 16. - Effect of number of shields on heat-transfer rate to a plane source

at zero temperature.
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Figure 16, - Concluded.
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Figure 17. - Effect of number of shields on heat-transfer rate to plane source

at nonzero temperature.
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Temperature ratio, T /Ty

Heat-transfer rate, Ql/oAng

o

Source temperature

All surfaces have same emissivity
. ———— Surface of 1 has an emissivity
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Figure 18. - Effect of emissivity and source temperature ratio on heat-transfer rate. Spacing
ratio, 0.3 two shields,

AL O _ koA AL B

_ _— ——

=0Q|—‘T T1=og T1=0Q
I O

-

N

.2 4 6 .8 10 0 .2 .4 .6 .8 110 0 2 4 6 .8 LO
Radius ratio, r/R
(a) One shield. {(b) Two shields. (c) Three shields.

Figure 19. - Radial temperature distributions for one, two, and three shields. Spacing ratio, 0.1;
emissivity, 0.02.
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Figure 20. - Effect of targeting on heat-transfer rate for uniform temperature and

nonconducting shields.
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Figure 21. - Effect of targeting on radial temperature distributions for nonconducting shields. Spacing
ratio, 0.3; emissivity of nontargeted surfaces, 0.03.
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Figure 22, - Effect of shield conductivity on heat-transfer rate for one, two, and three shields. Spacing ratio, 0. 1;
emissivity, 0.1
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Figure 23. - Effect of variation in shield position on heat-transfer rate. Spacing ratio, 0.2.

(e) Three shields; variable
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Figure 24. - Heat-transfer rate due to solar flux as function of
spacing ratio and emissivity. Two shields.
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Figure 25. - Heat-transfer rate to source in absence of solar flux as
function of spacing ratio and emissivity. Two shields.
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Figure 26. - Total heat-transfer rate through strut as function of internal and external emissivity.
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Figure 27. - Effect of external emissivity and length to diameter ratio on strut temperature distribution, End

temperature ratio, 10; internal emissivity, 0.6.
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Figure 28, - Effect of radiation to conduction parameter on conducted heat-transfer rate for constant end
temperature ratios. Internal emissivity, 0.
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Figure 29, - Temperature distributions for constant values of radiation to conduction
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Figure 30. - Schematic drawing of heat balance for element of shield.
Surface being considered, j; conducted heat transfer rate, q;
radiant heat transfer rate, q,.
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Figure 31. - Schematic drawing of element numbering used in heat
balances. Number of elements on each surface of each system,
n, 5 total number of elements in system, k, 2n + 1.

| | | | |

I .

. | l }

1,1(3:,1,3) 1,3(11,3) 1,1:(3) 3 1 B,Tl(l) 3,1(3,1) 3,3(},3,1)
| | | l

I | |

| I | | |
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Figure 36. - Flow chart of subroutine INPUT.
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Figure 37. - Flow chart of routine SHIELD.
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Figure 38. - Flow chart of subroutine TBVUF.
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Figure 39. - Flow chart of subroutine VUFACL.
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Figure 40. - Flow chart of subroutine SUBVF,
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Figure 41. - Flow chart of subroutine SHCLC.
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Figure 42, - Flow chart of subroutine COEF.
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Figure 43, - Flow chart of subroutine QDOT.
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